Multiple Populations in Low-mass Globular Clusters: Eridanus
Abstract Multiple populations (MPs), characterized by variations in light elemental abundances, have been found in stellar clusters in the Milky Way, Magellanic Clouds, as well as several other dwarf galaxies. Based on a large number of observations, mass has been suggested to be a key parameter aff...
Saved in:
Published in | The Astrophysical journal Vol. 943; no. 2; pp. 86 - 95 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Philadelphia
The American Astronomical Society
01.02.2023
IOP Publishing |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Abstract
Multiple populations (MPs), characterized by variations in light elemental abundances, have been found in stellar clusters in the Milky Way, Magellanic Clouds, as well as several other dwarf galaxies. Based on a large number of observations, mass has been suggested to be a key parameter affecting the presence and appearance of MPs in stellar clusters. To further investigate the existence of MPs in low-mass clusters and explore the mass threshold for the formation of MPs, we carried out a project studying the composition of the stellar population in several low-mass Galactic globular clusters. Here we present our study on the cluster Eridanus. With blue-UV low-resolution spectra obtained with the OSIRIS/Multi-object spectrograph on the Gran Telescopio Canarias, we computed the spectral indices of CH and CN for a sample of giant stars and derived their carbon and nitrogen abundances using model spectra. A significant dispersion in the initial surface abundance of nitrogen was found in the sample, indicating the existence of MPs in Eridanus. Inspecting the age–initial mass distribution of in situ clusters with MPs, we find a slight trend that initial mass increases with increasing age, and the lowest initial masses of
log
M
initial
∼ 4.98 and 5.26 are found at the young and old end, respectively, which might provide a rough reference for the mass threshold for clusters to form MPs. However, more observations of clusters with low initial masses are still necessary before any firm conclusion can be drawn. |
---|---|
Bibliography: | Stars and Stellar Physics AAS39327 |
ISSN: | 0004-637X 1538-4357 |
DOI: | 10.3847/1538-4357/acac22 |