Gamma Radiation Image Noise Prediction Method Based on Statistical Analysis and Random Walk

The gamma radiation environment is one of the harshest operating environments for image acquisition systems, and the captured images are heavily noisy. In this paper, we improve the multi-frame difference method for the characteristics of noise and add an edge detection algorithm to segment the nois...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 22; no. 19; p. 7325
Main Authors Li, Dongjie, Deng, Haipeng, Yao, Gang, Jiang, Jicheng, Zhang, Yubao
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 27.09.2022
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The gamma radiation environment is one of the harshest operating environments for image acquisition systems, and the captured images are heavily noisy. In this paper, we improve the multi-frame difference method for the characteristics of noise and add an edge detection algorithm to segment the noise region and extract the noise quantization information. A Gaussian mixture model of the gamma radiation noise is then established by performing a specific statistical analysis of the amplitude and quantity information of the noise. The established model is combined with the random walk algorithm to generate noise and achieve the prediction of image noise under different accumulated doses. Evaluated by objective similarity matching, there is no significant difference between the predicted image noise and the actual noise in subjective perception. The ratio of similarity-matched images in the sample from the predicted noise to the actual noise reaches 0.908. To further illustrate the spillover effect of this research, in the discussion session, we used the predicted image noise as the training set input to a deep residual network for denoising. The network model was able to achieve a good denoising effect. The results show that the prediction method proposed in this paper can accomplish the prediction of gamma radiation image noise, which is beneficial to the elimination of image noise in this environment.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1424-8220
1424-8220
DOI:10.3390/s22197325