Gamma Radiation Image Noise Prediction Method Based on Statistical Analysis and Random Walk
The gamma radiation environment is one of the harshest operating environments for image acquisition systems, and the captured images are heavily noisy. In this paper, we improve the multi-frame difference method for the characteristics of noise and add an edge detection algorithm to segment the nois...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 22; no. 19; p. 7325 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
27.09.2022
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The gamma radiation environment is one of the harshest operating environments for image acquisition systems, and the captured images are heavily noisy. In this paper, we improve the multi-frame difference method for the characteristics of noise and add an edge detection algorithm to segment the noise region and extract the noise quantization information. A Gaussian mixture model of the gamma radiation noise is then established by performing a specific statistical analysis of the amplitude and quantity information of the noise. The established model is combined with the random walk algorithm to generate noise and achieve the prediction of image noise under different accumulated doses. Evaluated by objective similarity matching, there is no significant difference between the predicted image noise and the actual noise in subjective perception. The ratio of similarity-matched images in the sample from the predicted noise to the actual noise reaches 0.908. To further illustrate the spillover effect of this research, in the discussion session, we used the predicted image noise as the training set input to a deep residual network for denoising. The network model was able to achieve a good denoising effect. The results show that the prediction method proposed in this paper can accomplish the prediction of gamma radiation image noise, which is beneficial to the elimination of image noise in this environment. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1424-8220 1424-8220 |
DOI: | 10.3390/s22197325 |