Factors influencing gene expression and resistance for Gram-negative organisms expressing plasmid-encoded ampC genes of Enterobacter origin

High-level expression of AmpC β-lactamases results in organisms resistant to multiple β-lactam antibiotics. The mechanism of chromosomally mediated AmpC resistance has been elucidated, however the mechanism(s) driving plasmid-encoded AmpC resistance are unknown. Studies were designed to identify fac...

Full description

Saved in:
Bibliographic Details
Published inJournal of antimicrobial chemotherapy Vol. 51; no. 5; pp. 1141 - 1151
Main Authors Reisbig, Mark D., Hossain, Ashfaque, Hanson, Nancy D.
Format Journal Article
LanguageEnglish
Published Oxford Oxford University Press 01.05.2003
Oxford Publishing Limited (England)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:High-level expression of AmpC β-lactamases results in organisms resistant to multiple β-lactam antibiotics. The mechanism of chromosomally mediated AmpC resistance has been elucidated, however the mechanism(s) driving plasmid-encoded AmpC resistance are unknown. Studies were designed to identify factors which influence expression of plasmid-encoded ampC genes and correlate these factors with resistance. As the model system, ampC genes of Enterobacter origin were used to determine how gene copy number, genetic background and genetic organization influenced resistance phenotypes. To this end, gene expression from the plasmid-encoded inducible blaACT-1 and non-inducible blaMIR-1 were compared with chromosomal ampC gene expression from both wild-type (WT) and derepressed Enterobacter cloacae isolates. RNA levels within the original clinical isolates were examined using primer extension analysis, whereas a new PCR strategy was developed to examine gene copy number. These data revealed that blaACT-1 and blaMIR-1 constitutive expression was 33- and 95-fold higher than WT expression, whereas copy numbers of the plasmid-encoded genes were 2 and 12, respectively. Differences in promoters and transcriptional starts for the respective plasmid-encoded genes were noted and contribute to increases observed in overall expression. Finally, β-lactam MICs were increased two- to 16-fold when blaACT-1 was expressed in Escherichia coli AmpD– strains compared with E. coli AmpD+ strains. In conclusion, high-level expression of plasmid-encoded ampC genes requires interplay between multiple factors including genetic organization, promoter modifications, genetic background, and to some extent gene copy number. In addition, clinical laboratories need to be aware that genetic backgrounds of inducible plasmid-encoded genes can dramatically influence MICs for organisms not normally associated with derepressed phenotypes.
Bibliography:istex:F2980B409F3FAD7056175959D2278A11AB2763F4
Received 5 August 2002; returned 13 December 2002; revised 11 February 2003; accepted 14 February 2003
ark:/67375/HXZ-3X0FT36Z-4
local:dkg204
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0305-7453
1460-2091
1460-2091
DOI:10.1093/jac/dkg204