Improved semi-arid community type differentiation with the NOAA AVHRR via exploitation of the directional signal

Mapping semi-arid vegetation types at the community level is extremely difficult for optical sensors with large ground footprints such as the National Oceanic and Atmospheric Administration (NOAA) Advanced Very High Resolution Radiometer (AVHRR). Attempts to use solar wavelength AVHRR data in commun...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on geoscience and remote sensing Vol. 40; no. 5; pp. 1132 - 1149
Main Authors Chopping, M.J., Rango, A., Ritchie, J.C.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.05.2002
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Mapping semi-arid vegetation types at the community level is extremely difficult for optical sensors with large ground footprints such as the National Oceanic and Atmospheric Administration (NOAA) Advanced Very High Resolution Radiometer (AVHRR). Attempts to use solar wavelength AVHRR data in community type differentiation have often resulted in unacceptable classification errors which are usually attributed to noise from topographic and soil background variations, inaccurate reflectance retrieval and poor registration. One source of variation which is rarely accounted for adequately is the directional signal resulting from the combined effects of the surface bidirectional reflectance distribution function (BRDF) and the variation of viewing and illumination geometry as a function of scan angle, season, latitude and orbital overpass time. In this study, a linear semiempirical kernel-driven BRDF model is used to examine the utility:of the directional signal in community and cover type differentiation over discontinuous but statistically homogeneous semi-arid canopies in Inner Mongolia Autonomous Region, China, and New Mexico, USA. This research shows that the directional signal resulting from the physical structure of the canopy-soil complex can be retrieved to provide information which is highly complementary to that obtained in the spectral domain.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0196-2892
1558-0644
DOI:10.1109/TGRS.2002.1010900