Enhancement of Swimming Speed Leads to a More-Efficient Chemotactic Response to Repellent
Negative chemotaxis refers to the motion of microorganisms away from regions with high concentrations of chemorepellents. In this study, we set controlled gradients of NiCl2, a chemorepellent, in microchannels to quantify the motion of Escherichia coli over a broad range of concentrations. The exper...
Saved in:
Published in | Applied and environmental microbiology Vol. 82; no. 4; pp. 1205 - 1214 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Society for Microbiology
15.02.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Negative chemotaxis refers to the motion of microorganisms away from regions with high concentrations of chemorepellents. In this study, we set controlled gradients of NiCl2, a chemorepellent, in microchannels to quantify the motion of Escherichia coli over a broad range of concentrations. The experimental technique measured the motion of the bacteria in space and time and further related the motion to the local concentration profile of the repellent. Results show that the swimming speed of bacteria increases with an increasing concentration of repellent, which in turn enhances the drift velocity. The contribution of the increased swimming speed to the total drift velocity was in the range of 20 to 40%, with the remaining contribution coming from the modulation of the tumble frequency. A simple model that incorporates receptor dynamics, including adaptation, intracellular signaling, and swimming speed variation, was able to qualitatively capture the observed trend in drift velocity. |
---|---|
AbstractList | Negative chemotaxis refers to the motion of microorganisms away from regions with high concentrations of chemorepellents. In this study, we set controlled gradients of NiCl
2
, a chemorepellent, in microchannels to quantify the motion of
Escherichia coli
over a broad range of concentrations. The experimental technique measured the motion of the bacteria in space and time and further related the motion to the local concentration profile of the repellent. Results show that the swimming speed of bacteria increases with an increasing concentration of repellent, which in turn enhances the drift velocity. The contribution of the increased swimming speed to the total drift velocity was in the range of 20 to 40%, with the remaining contribution coming from the modulation of the tumble frequency. A simple model that incorporates receptor dynamics, including adaptation, intracellular signaling, and swimming speed variation, was able to qualitatively capture the observed trend in drift velocity. Negative chemotaxis refers to the motion of microorganisms away from regions with high concentrations of chemorepellents. In this study, we set controlled gradients of NiCl2, a chemorepellent, in microchannels to quantify the motion of Escherichia coli over a broad range of concentrations. The experimental technique measured the motion of the bacteria in space and time and further related the motion to the local concentration profile of the repellent. Results show that the swimming speed of bacteria increases with an increasing concentration of repellent, which in turn enhances the drift velocity. The contribution of the increased swimming speed to the total drift velocity was in the range of 20 to 40%, with the remaining contribution coming from the modulation of the tumble frequency. A simple model that incorporates receptor dynamics, including adaptation, intracellular signaling, and swimming speed variation, was able to qualitatively capture the observed trend in drift velocity. ABSTRACT Negative chemotaxis refers to the motion of microorganisms away from regions with high concentrations of chemorepellents. In this study, we set controlled gradients of NiCl 2 , a chemorepellent, in microchannels to quantify the motion of Escherichia coli over a broad range of concentrations. The experimental technique measured the motion of the bacteria in space and time and further related the motion to the local concentration profile of the repellent. Results show that the swimming speed of bacteria increases with an increasing concentration of repellent, which in turn enhances the drift velocity. The contribution of the increased swimming speed to the total drift velocity was in the range of 20 to 40%, with the remaining contribution coming from the modulation of the tumble frequency. A simple model that incorporates receptor dynamics, including adaptation, intracellular signaling, and swimming speed variation, was able to qualitatively capture the observed trend in drift velocity. |
Author | Karmakar, Richa Jesudasan, Rajesh E Uday Bhaskar, R V S Tirumkudulu, Mahesh S Venkatesh, K V |
Author_xml | – sequence: 1 givenname: Richa surname: Karmakar fullname: Karmakar, Richa email: mahesh@che.iitb.ac.in, venks@iitb.ac.in organization: Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India mahesh@che.iitb.ac.in venks@iitb.ac.in – sequence: 2 givenname: R V S surname: Uday Bhaskar fullname: Uday Bhaskar, R V S organization: Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India – sequence: 3 givenname: Rajesh E surname: Jesudasan fullname: Jesudasan, Rajesh E organization: Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India – sequence: 4 givenname: Mahesh S surname: Tirumkudulu fullname: Tirumkudulu, Mahesh S email: mahesh@che.iitb.ac.in, venks@iitb.ac.in organization: Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India mahesh@che.iitb.ac.in venks@iitb.ac.in – sequence: 5 givenname: K V surname: Venkatesh fullname: Venkatesh, K V organization: Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26655753$$D View this record in MEDLINE/PubMed |
BookMark | eNqN0c9LHDEUB_Agiq7aW89lwEsPHZtMfl8EWbY_YKWgXnoKmcyLG9lJxsmspf99s_UH6slTAvnwXt77HqLdmCIg9JHgU0Ia9fV8cXGKKdWyJnwHzQjWquaUil00w1jrumkYPkCHOd9ijBkWah8dNEJwLjmdod-LuLLRQQ9xqpKvrv6Evg_xproaALpqCbbL1ZQqW12kEeqF98GFrZ2voE-TdVNw1SXkIcUMW3gJA6zXRRyjPW_XGT48nkfo-tviev6jXv76_nN-vqwdY3yqJWWWKMFI1zrctpZ05cI4ENco3lgruG9akN4yZT33HqzuJLMMa1kGA3qEzh7KDpu2h86VzqNdm2EMvR3_mmSDef0Sw8rcpHvDJCelQynw-bHAmO42kCfTh-zKDDZC2mRDpFBlV1rp99BGC4kFK_TkDb1NmzGWRWyVUFhQKYv68qDcmHIewT__m2CzTdeUdM3_dA3hhX96OeszfoqT_gNGN6H4 |
CODEN | AEMIDF |
CitedBy_id | crossref_primary_10_1016_j_chom_2021_06_003 crossref_primary_10_1128_aem_00373_22 crossref_primary_10_1371_journal_pone_0214719 crossref_primary_10_1103_PhysRevE_97_032420 crossref_primary_10_1146_annurev_control_053018_023803 crossref_primary_10_1002_jobm_202000661 crossref_primary_10_1103_PhysRevE_105_014411 crossref_primary_10_1002_dac_3365 crossref_primary_10_3390_w12010140 |
Cites_doi | 10.1016/j.cub.2006.11.027 10.1093/bioinformatics/17.6.575 10.1073/pnas.1101996108 10.1128/JB.186.12.3687-3694.2004 10.1017/jfm.2012.217 10.1038/nprot.2010.18 10.1006/jmbi.1999.2535 10.3791/1779 10.1073/pnas.0931258100 10.1128/JB.186.2.588-592.2004 10.1126/science.181.4094.60 10.1006/jtbi.1997.0651 10.1128/JB.00854-09 10.1142/p303 10.1091/mbc.4.5.469 10.1103/PhysRevE.74.011903 10.1128/jb.118.2.560-576.1974 10.1093/emboj/17.15.4238 10.1007/b97370 10.1038/249073a0 10.1091/mbc.6.10.1367 10.1093/bioinformatics/bti391 10.1016/j.mimet.2005.06.010 10.1016/j.bpj.2012.09.005 10.1073/pnas.82.24.8771 10.1007/BF00655205 10.1039/b924368b 10.1016/S0006-3495(98)77777-X 10.1016/j.jmb.2013.02.016 10.1529/biophysj.108.134510 10.1016/j.cell.2010.01.018 10.1073/pnas.1415460111 10.1128/jb.172.9.5218-5224.1990 10.1128/jb.169.1.371-379.1987 10.1088/1478-3975/7/2/026007 10.1007/s00203-014-1044-5 |
ContentType | Journal Article |
Copyright | Copyright © 2016, American Society for Microbiology. All Rights Reserved. Copyright American Society for Microbiology Feb 2016 Copyright © 2016, American Society for Microbiology. All Rights Reserved. 2016 American Society for Microbiology |
Copyright_xml | – notice: Copyright © 2016, American Society for Microbiology. All Rights Reserved. – notice: Copyright American Society for Microbiology Feb 2016 – notice: Copyright © 2016, American Society for Microbiology. All Rights Reserved. 2016 American Society for Microbiology |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QL 7QO 7SN 7SS 7ST 7T7 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 SOI 7X8 5PM |
DOI | 10.1128/AEM.03397-15 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Virology and AIDS Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Biotechnology Research Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Environment Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE Engineering Research Database CrossRef MEDLINE - Academic Virology and AIDS Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Engineering Biology |
DocumentTitleAlternate | Enhanced Swimming Speed Leads to Efficient Chemotaxis |
EISSN | 1098-5336 |
Editor | Kivisaar, M. |
Editor_xml | – sequence: 1 givenname: M. surname: Kivisaar fullname: Kivisaar, M. |
EndPage | 1214 |
ExternalDocumentID | 3957966251 10_1128_AEM_03397_15 26655753 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Department of Biotechnology, Ministry of Science and Technology (DBT) grantid: BT/PR7712/BRB/10/1229/2013 – fundername: Department of Science and Technology, Ministry of Science and Technology (DST) grantid: DST/SJF/ETA-01/2010-11 – fundername: Department of Science and Technology, Ministry of Science and Technology (DST) grantid: SB/S3/CE/089/2013 |
GroupedDBID | --- -~X 0R~ 23M 2WC 39C 4.4 53G 5GY 5RE 5VS 6J9 85S AAZTW ABOGM ABPPZ ACBTR ACGFO ACIWK ACNCT ACPRK ADBBV ADUKH AENEX AFRAH AGVNZ ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BKOMP BTFSW CGR CS3 CUY CVF D0L DIK E.- E3Z EBS ECM EIF EJD F5P GX1 H13 HYE HZ~ K-O KQ8 L7B NPM O9- OK1 P2P PQQKQ RHF RHI RNS RPM RSF RXW TAE TAF TN5 TR2 TWZ UCJ UHB W8F WH7 WOQ X6Y ~02 ~KM AAYXX CITATION 7QL 7QO 7SN 7SS 7ST 7T7 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 SOI 7X8 5PM |
ID | FETCH-LOGICAL-c445t-734a18641dbc0bba1ddbc45e1c2852aa65f2be7fa48af5ffea9d74a4097240e3 |
IEDL.DBID | RPM |
ISSN | 0099-2240 |
IngestDate | Tue Sep 17 21:28:18 EDT 2024 Fri Oct 25 03:46:46 EDT 2024 Fri Oct 25 05:14:54 EDT 2024 Thu Oct 10 20:08:31 EDT 2024 Thu Sep 12 20:10:09 EDT 2024 Wed Oct 16 00:58:43 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | Copyright © 2016, American Society for Microbiology. All Rights Reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c445t-734a18641dbc0bba1ddbc45e1c2852aa65f2be7fa48af5ffea9d74a4097240e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 R.K. and R.V.S.U.B. contributed equally to this work. Citation Karmakar R, Uday Bhaskar RVS, Jesudasan RE, Tirumkudulu MS, Venkatesh KV. 2016. Enhancement of swimming speed leads to a more-efficient chemotactic response to repellent. Appl Environ Microbiol 82:1205–1214. doi:10.1128/AEM.03397-15. |
OpenAccessLink | https://aem.asm.org/content/aem/82/4/1205.full.pdf |
PMID | 26655753 |
PQID | 1766806377 |
PQPubID | 42251 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4751852 proquest_miscellaneous_1768575989 proquest_miscellaneous_1762967064 proquest_journals_1766806377 crossref_primary_10_1128_AEM_03397_15 pubmed_primary_26655753 |
PublicationCentury | 2000 |
PublicationDate | 2016-02-15 |
PublicationDateYYYYMMDD | 2016-02-15 |
PublicationDate_xml | – month: 02 year: 2016 text: 2016-02-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington – name: 1752 N St., N.W., Washington, DC |
PublicationTitle | Applied and environmental microbiology |
PublicationTitleAlternate | Appl Environ Microbiol |
PublicationYear | 2016 |
Publisher | American Society for Microbiology |
Publisher_xml | – name: American Society for Microbiology |
References | 20404797 - J Vis Exp. 2010;(38). pii: 1779. doi: 10.3791/1779 17208180 - Curr Biol. 2007 Jan 9;17(1):12-9 20303158 - Cell. 2010 Apr 2;141(1):107-16 20233931 - J Bacteriol. 2010 May;192(10):2633-7 3909154 - Proc Natl Acad Sci U S A. 1985 Dec;82(24):8771-4 25308216 - Arch Microbiol. 2015 Mar;197(2):211-22 11395441 - Bioinformatics. 2001 Jun;17(6):575-6 8573792 - Mol Biol Cell. 1995 Oct;6(10):1367-80 15175281 - J Bacteriol. 2004 Jun;186(12):3687-94 3025180 - J Bacteriol. 1987 Jan;169(1):371-9 9687492 - EMBO J. 1998 Aug 3;17(15):4238-48 4576832 - Science. 1973 Jul 6;181(4094):60-3 23083711 - Biophys J. 2012 Oct 17;103(8):1683-90 16907123 - Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Jul;74(1 Pt 1):011903 4597449 - J Bacteriol. 1974 May;118(2):560-76 18658218 - Biophys J. 2008 Nov 1;95(9):4481-93 20431532 - Nat Protoc. 2010 May;5(5):864-72 23454041 - J Mol Biol. 2013 May 27;425(10):1760-4 14702329 - J Bacteriol. 2004 Jan;186(2):588-92 25468981 - Proc Natl Acad Sci U S A. 2014 Dec 16;111(50):17771-6 21918111 - Proc Natl Acad Sci U S A. 2011 Sep 27;108(39):16235-40 2203744 - J Bacteriol. 1990 Sep;172(9):5218-24 8334303 - Mol Biol Cell. 1993 May;4(5):469-82 20485750 - Mol Biosyst. 2010 Jun;6(6):1082-92 16040143 - J Microbiol Methods. 2006 Apr;65(1):107-16 20505226 - Phys Biol. 2010;7(2):026007 12704234 - Proc Natl Acad Sci U S A. 2003 Apr 29;100(9):5449-54 4598030 - Nature. 1974 May 3;249(452):73-4 15774553 - Bioinformatics. 2005 Jun 1;21(11):2714-21 9628844 - J Theor Biol. 1998 May 7;192(1):117-28 9449320 - Biophys J. 1998 Jan;74(1):175-81 10047482 - J Mol Biol. 1999 Mar 5;286(4):1059-74 Berg HC (e_1_3_3_33_2) 2010 e_1_3_3_17_2 e_1_3_3_16_2 Bray D (e_1_3_3_19_2) 1995; 6 e_1_3_3_38_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_15_2 e_1_3_3_14_2 e_1_3_3_32_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_40_2 Eisenbach M (e_1_3_3_35_2) 2004 Berg HC (e_1_3_3_34_2) 1972; 239 e_1_3_3_6_2 e_1_3_3_5_2 e_1_3_3_8_2 Manson MD (e_1_3_3_21_2) 2010 e_1_3_3_7_2 e_1_3_3_28_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_24_2 e_1_3_3_23_2 e_1_3_3_26_2 e_1_3_3_25_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_3_2 |
References_xml | – ident: e_1_3_3_17_2 doi: 10.1016/j.cub.2006.11.027 – ident: e_1_3_3_16_2 doi: 10.1093/bioinformatics/17.6.575 – ident: e_1_3_3_24_2 doi: 10.1073/pnas.1101996108 – ident: e_1_3_3_31_2 doi: 10.1128/JB.186.12.3687-3694.2004 – ident: e_1_3_3_39_2 doi: 10.1017/jfm.2012.217 – ident: e_1_3_3_27_2 doi: 10.1038/nprot.2010.18 – ident: e_1_3_3_15_2 doi: 10.1006/jmbi.1999.2535 – ident: e_1_3_3_6_2 doi: 10.3791/1779 – ident: e_1_3_3_5_2 doi: 10.1073/pnas.0931258100 – ident: e_1_3_3_7_2 doi: 10.1128/JB.186.2.588-592.2004 – ident: e_1_3_3_2_2 doi: 10.1126/science.181.4094.60 – ident: e_1_3_3_14_2 doi: 10.1006/jtbi.1997.0651 – volume-title: Sensory mechanisms in bacteria: molecular aspects of signal recognition year: 2010 ident: e_1_3_3_21_2 contributor: fullname: Manson MD – ident: e_1_3_3_10_2 doi: 10.1128/JB.00854-09 – volume-title: Chemotaxis year: 2004 ident: e_1_3_3_35_2 doi: 10.1142/p303 contributor: fullname: Eisenbach M – ident: e_1_3_3_18_2 doi: 10.1091/mbc.4.5.469 – ident: e_1_3_3_30_2 doi: 10.1103/PhysRevE.74.011903 – ident: e_1_3_3_3_2 doi: 10.1128/jb.118.2.560-576.1974 – ident: e_1_3_3_23_2 doi: 10.1093/emboj/17.15.4238 – ident: e_1_3_3_36_2 doi: 10.1007/b97370 – ident: e_1_3_3_29_2 doi: 10.1038/249073a0 – volume: 6 start-page: 1367 year: 1995 ident: e_1_3_3_19_2 article-title: Computer analysis of the binding reactions leading to a transmembrane receptor-linkedmultiprotein complex involved in bacterial chemotaxis publication-title: Mol Biol Cell doi: 10.1091/mbc.6.10.1367 contributor: fullname: Bray D – ident: e_1_3_3_13_2 doi: 10.1093/bioinformatics/bti391 – ident: e_1_3_3_22_2 doi: 10.1016/j.mimet.2005.06.010 – ident: e_1_3_3_40_2 doi: 10.1016/j.bpj.2012.09.005 – ident: e_1_3_3_8_2 doi: 10.1073/pnas.82.24.8771 – ident: e_1_3_3_26_2 doi: 10.1007/BF00655205 – volume-title: Random walks in biology year: 2010 ident: e_1_3_3_33_2 contributor: fullname: Berg HC – ident: e_1_3_3_11_2 doi: 10.1039/b924368b – volume: 239 start-page: 502 year: 1972 ident: e_1_3_3_34_2 article-title: Chemotaxis in Escherichia coli analysed by three-dimensional tracking publication-title: Nature contributor: fullname: Berg HC – ident: e_1_3_3_20_2 doi: 10.1016/S0006-3495(98)77777-X – ident: e_1_3_3_32_2 doi: 10.1016/j.jmb.2013.02.016 – ident: e_1_3_3_37_2 doi: 10.1529/biophysj.108.134510 – ident: e_1_3_3_28_2 doi: 10.1016/j.cell.2010.01.018 – ident: e_1_3_3_25_2 doi: 10.1073/pnas.1415460111 – ident: e_1_3_3_9_2 doi: 10.1128/jb.172.9.5218-5224.1990 – ident: e_1_3_3_4_2 doi: 10.1128/jb.169.1.371-379.1987 – ident: e_1_3_3_12_2 doi: 10.1088/1478-3975/7/2/026007 – ident: e_1_3_3_38_2 doi: 10.1007/s00203-014-1044-5 |
SSID | ssj0004068 |
Score | 2.2948754 |
Snippet | Negative chemotaxis refers to the motion of microorganisms away from regions with high concentrations of chemorepellents. In this study, we set controlled... ABSTRACT Negative chemotaxis refers to the motion of microorganisms away from regions with high concentrations of chemorepellents. In this study, we set... |
SourceID | pubmedcentral proquest crossref pubmed |
SourceType | Open Access Repository Aggregation Database Index Database |
StartPage | 1205 |
SubjectTerms | Chemotaxis E coli Environmental Microbiology Escherichia coli Escherichia coli - drug effects Escherichia coli - physiology Locomotion Microbiology Models, Biological Nickel - metabolism Velocity |
Title | Enhancement of Swimming Speed Leads to a More-Efficient Chemotactic Response to Repellent |
URI | https://www.ncbi.nlm.nih.gov/pubmed/26655753 https://www.proquest.com/docview/1766806377 https://search.proquest.com/docview/1762967064 https://search.proquest.com/docview/1768575989 https://pubmed.ncbi.nlm.nih.gov/PMC4751852 |
Volume | 82 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED-awtj2ULa027x-oEH36MQfkiU_lpJSNlK6toPuyUi2TAOLHRqXsf9-d3IUmg760DeDziDuTr7fyXe_AzjOEo6f3joKdalMyPG4hbmkXpnUyMhYniaSGoWnF9n5T_7tVtxugfC9MK5ovzSzUfN7Pmpmd662cjEvx75ObHw5PeX0r0Ak4wEM0EF9iu6bIaNMeepJile-2j1R45PJdBSlGIHDmCbWYGwSiFbSzZD0H858Wi75KP6cvYOdFXBkJ_0G38OWbYbwqh8l-XcIr32H8XIIbx-RDO7Cr0lzR6ala0DW1uz6z2w-xxV2vcDIxWjG5pJ1LdNs2t7bcOI4JUiWuATazjVRsau-lNaSIGJ2uu1vuj24OZvcnJ6Hq4EKYcm56EKZch2rjMeVKSNjdFzhAxc2LhNUp9aZqBNjZa250rWoa6vzSnJNlFioSJt-gO2mbewnYHVucl7lVmhuOSZBWgoEgoKSrSpStgrgq1dpsehpMwqXbiSqQCsUzgpFLAI48PouVodnWRBnpULoJGUAX9bL6Pb0L0M3tn1wMkmeSQRUz8q4-aMqD-Bjb8L1ZrztA5Abxl0LEO325gp6o6PfXnnf5xe_uQ9vEHa52u9YHMB2d_9gDxHadOYIBt9_qCPn0P8AiHr5FA |
link.rule.ids | 230,315,730,783,787,888,27936,27937,53804,53806 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB9qRaoPoudHo1VX0Mfc5WM3u3ks5cqpTRF7Qn0Ku8mGHnjJ0Usp_vfObG6PnoIPvgV2AsvMbOY3m5nfAHzIEo6f3iYKdaVMyPG4hbmkXpnUyMhYniaSGoWL82z2nX--FJd7IHwvjCvar8xi3P5cjtvFlautXC2ria8Tm3wtTjj9KxDJ5B7cx_MacZ-k-3bIKFOefJIilq93T9TkeFqMoxRjcBjTzBqMTgLxSroblP5Cmn8WTN6JQKdP4PEGOrLjYYtPYc-2I3gwDJP8NYID32O8HsGjOzSDz-DHtL0i49JFIOsadnG7WC5xhV2sMHYxmrK5Zn3HNCu6axtOHasEyRKbQNe7Nir2bSimtSSIqJ3u-9v-OcxPp_OTWbgZqRBWnIs-lCnXscp4XJsqMkbHNT5wYeMqQYVqnYkmMVY2mivdiKaxOq8l10SKhYq06QvYb7vWHgJrcpPzOrdCc8sxDdJSIBQUlG7VkbJ1AB-9SsvVQJxRuoQjUSVaoXRWKGMRwJHXd7k5PuuSWCsVgicpA3i_XUbHp78ZurXdjZNJ8kwipPqnjJtAqvIAXg4m3G7G2z4AuWPcrQARb--uoD86Au6N_7367zffwcFsXpyVZ5_Ov7yGhwjCXCV4LI5gv7--sW8Q6PTmrXPr3-u--3U |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED_BEF8PCApsgQFGgsc0X3acPE6j1fjoNLEhjafITmytEk2qNRPiv-fOqasWJB54i-SLZN2dc79z7n4H8C5POX56bRyqutAhx-MWlpJ6ZTItY214lkpqFJ6d5iff-KdLcbk16ssV7dd6Pm5_LMbt_MrVVi4XdeTrxKKz2TGnfwUijZaNjW7DHTyzce4Tdd8SGeeFJ6CkqOVr3tMiOprMxnGGcThMaG4NRiiBmCXbDUx_oc0_iya3otD0MTxaw0d2NGzzCdwy7QjuDgMlf43gvu8zXo3g4RbV4FP4PmmvyMB0Gcg6y85_zhcLXGHnS4xfjCZtrljfMcVm3bUJJ45ZgmSJUaDrXSsV-zoU1BoSROROd_5t_wwuppOL45NwPVYhrDkXfSgzrpIi50mj61hrlTT4wIVJ6hSVqlQubKqNtIoXygprjSobyRURY6EiTfYc9tquNQfAbKlL3pRGKG44pkJKCoSDglKuJi5ME8B7r9JqOZBnVC7pSIsKrVA5K1SJCODQ67taH6FVRcyVaNdMygDebpbR-emPhmpNd-Nk0jKXCKv-KeOmkBZlAPuDCTeb8bYPQO4YdyNA5Nu7K-iTjoR77YMv_vvNN3Dv7MO0-vLx9PNLeIA4zBWDJ-IQ9vrrG_MKsU6vXzuv_g2Ol_yI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancement+of+Swimming+Speed+Leads+to+a+More-Efficient+Chemotactic+Response+to+Repellent&rft.jtitle=Applied+and+environmental+microbiology&rft.au=Karmakar%2C+Richa&rft.au=Uday+Bhaskar%2C+R+VS&rft.au=Jesudasan%2C+Rajesh+E&rft.au=Tirumkudulu%2C+Mahesh+S&rft.date=2016-02-15&rft.issn=0099-2240&rft.eissn=1098-5336&rft.volume=82&rft.issue=4&rft.spage=1205&rft.epage=1214&rft_id=info:doi/10.1128%2FAEM.03397-15&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0099-2240&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0099-2240&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0099-2240&client=summon |