Outage Performance of Pairwise NOMA Allowing a Dynamic Decoding Order and Optimal Pairs of Power Levels
In this article, we evaluate the overall outage probability (OOP) of pairwise Non-orthogonal Multiple Access (NOMA) for both uplink and downlink. We also propose a dynamic decoding order (DDO) together with a fixed pairwise power allocation (FPPA) scheme, in which the optimal decoding order is decid...
Saved in:
Published in | IEEE open journal of the Communications Society Vol. 1; pp. 1886 - 1906 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In this article, we evaluate the overall outage probability (OOP) of pairwise Non-orthogonal Multiple Access (NOMA) for both uplink and downlink. We also propose a dynamic decoding order (DDO) together with a fixed pairwise power allocation (FPPA) scheme, in which the optimal decoding order is decided based on the instantaneous channel gains, and thereafter, a pair of power levels is assigned in accordance with the selected decoding order. Exact closed-form expressions of the OOPs for both uplink and downlink pairwise NOMA considering all proposed decoding orders over Nakagami-<inline-formula> <tex-math notation="LaTeX">m </tex-math></inline-formula> fading are derived. Further, we find the optimal fixed power levels for different power allocation strategies so that the OOPs are minimized. Moreover, we investigate the influence of the distances between the source nodes and the access point (AP), the target transfer rates and the path-loss exponents on the OOPs for all cases of decoding orders. In addition, we benchmark our proposed DDO against other decoding orders in terms of the OOP. The results show that assigning optimal fixed power levels which takes the instantaneous decoding order into account not only improves the communication reliability, but also reduces the complexity and computational load at the AP. |
---|---|
ISSN: | 2644-125X 2644-125X |
DOI: | 10.1109/OJCOMS.2020.3039536 |