Improvement of kink-free output power by using highly resistive regions in both sides of the ridge stripe for 980-nm laser diodes

Suppressing the lateral expansion of driving current by forming highly resistive regions at both sides of the ridge stripe in ridge-waveguide-type 980-nm laser diodes leads to an enhanced kink-free output power. The highly resistive regions are formed by hydrogen passivation of p-type carrier (Zn) o...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of quantum electronics Vol. 40; no. 9; pp. 1203 - 1207
Main Authors Yuda, M., Hirono, T., Kozen, A., Amano, C.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.09.2004
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Suppressing the lateral expansion of driving current by forming highly resistive regions at both sides of the ridge stripe in ridge-waveguide-type 980-nm laser diodes leads to an enhanced kink-free output power. The highly resistive regions are formed by hydrogen passivation of p-type carrier (Zn) on the plasma exposure in a mixture gas of methane and hydrogen. A simulation predicted a decrease in local gain in the lateral direction at both sides of the ridge stripe. Fabricated laser diodes with the highly resistive regions exhibit kink-free output power of over 500 mW, showing an increase in kink-free power of 85 mW on average with an increase of slope efficiency of about 10% compared to those without highly resistive regions.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0018-9197
1558-1713
DOI:10.1109/JQE.2004.833218