Triplet Pairing in Neutron Matter

The presence of superfluidity in neutron star interiors can affect the cooling of neutron stars in intricate ways, enhancing certain mechanisms and suppressing others. Model calculations employing realistic nuclear potentials in Bardeen–Cooper–Schrieffer theory generally suggest the development of a...

Full description

Saved in:
Bibliographic Details
Published inThe Astrophysical journal Vol. 955; no. 1; pp. 76 - 80
Main Authors Krotscheck, Eckhard, Papakonstantinou, Panagiota, Wang, Jiawei
Format Journal Article
LanguageEnglish
Published Philadelphia The American Astronomical Society 01.09.2023
IOP Publishing
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The presence of superfluidity in neutron star interiors can affect the cooling of neutron stars in intricate ways, enhancing certain mechanisms and suppressing others. Model calculations employing realistic nuclear potentials in Bardeen–Cooper–Schrieffer theory generally suggest the development of a 3 P 2 – 3 F 2 pairing gap, and therefore the presence of superfluidity in dense neutron star matter. Improved models that go beyond conventional mean-field calculations by including polarization effects suggest a suppression of the triplet gap. We have evaluated the pairing interaction by summing the “parquet” Feynman diagrams, which include both ladder and ring diagrams systematically, plus a set of important nonparquet diagrams, making this the most comprehensive diagram-based approach presently available. Our results suggest a radical suppression of the 3 P 2 – 3 F 2 triplet pairing gap and an enhancement of 3 P 0 pairing.
Bibliography:AAS46812
High-Energy Phenomena and Fundamental Physics
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0004-637X
1538-4357
DOI:10.3847/1538-4357/acee7c