Microbiome investigation in the ecological speciation context of lake whitefish (Coregonus clupeaformis) using next‐generation sequencing

Few studies have applied NGS methods to investigate the microbiome of vertebrates in their natural environment and in freshwater fishes in particularly. Here, we used pyrosequencing of the 16S gene rRNA to (i) test for differences in kidney bacterial communities (i.e. microbiota) of dwarf and normal...

Full description

Saved in:
Bibliographic Details
Published inJournal of evolutionary biology Vol. 27; no. 6; pp. 1029 - 1046
Main Authors Sevellec, M, Pavey, S. A, Boutin, S, Filteau, M, Derome, N, Bernatchez, L
Format Journal Article
LanguageEnglish
Published Switzerland Blackwell Science 01.06.2014
Blackwell Publishing Ltd
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Few studies have applied NGS methods to investigate the microbiome of vertebrates in their natural environment and in freshwater fishes in particularly. Here, we used pyrosequencing of the 16S gene rRNA to (i) test for differences in kidney bacterial communities (i.e. microbiota) of dwarf and normal whitefish found as sympatric pairs, (ii) test the hypothesis of higher bacterial diversity in normal compared with dwarf whitefish and (iii) test for the occurrence of parallelism with the presence and composition of bacterial communities across species pairs inhabiting different lakes. The kidney microbiota of 253 dwarf and normal whitefish from five lakes was analysed combining a double‐nested PCR approach with 454 pyrosequencing. Bacteria were detected in 52.6% of the analysed whitefish. There was no overall significant difference among lakes and forms, although the lake × form interaction was found significant. We identified 579 bacterial genera, which is substantially more than previous descriptions using less sensitive techniques of fish bacterial diversity in kidney, pathogenic or not. Ten of these genera contained eighteen pathogenic species. Differences in bacteria composition between whitefish forms were not parallel among lakes. In accordance with the higher diversity of prey types, normal whitefish kidney tissue consistently had a more diverse bacterial community and this pattern was parallel among lakes. These results add to building evidence from previous studies on this system that the adaptive divergence of dwarf, and normal whitefish has been driven by both parallel and nonparallel ecological conditions across lakes.
Bibliography:http://dx.doi.org/10.1111/jeb.12374
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1010-061X
1420-9101
DOI:10.1111/jeb.12374