Oxidation stability of yeast biodiesel using Rancimat analysis: validation using infrared spectroscopy and gas chromatography–mass spectrometry
Biodiesel and single cell oils obtained from oleaginous yeasts grown in industrial waste are attractive alternatives to the conventional fuels. However, there are only few articles dealing with the stability of the microbial biofuels. Hence, this study aimed at characterizing the storage time of bio...
Saved in:
Published in | Environmental science and pollution research international Vol. 26; no. 3; pp. 3075 - 3090 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.01.2019
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Biodiesel and single cell oils obtained from oleaginous yeasts grown in industrial waste are attractive alternatives to the conventional fuels. However, there are only few articles dealing with the stability of the microbial biofuels. Hence, this study aimed at characterizing the storage time of biodiesels using Rancimat methods. The microbial oil and the biodiesel obtained from microbial oil have been characterized with storage stability due to various oxidizing and thermal damage. Here, the microbial fuels were subject to Rancimat analysis and found to have high thermal-oxidative stability of 18 and 8.78 h for biodiesel and oil, respectively. The storage stability resulting from storage conditions was extrapolated for biodiesel and oil and has been found to be 1.62 and 0.54 years, respectively. The infrared spectroscopic analysis reveals the degree of oxidation found after the induction time was reached and shows the characteristic peaks for degradation products. Gas chromatography revealed the compounds that were responsible for the stability as well as the amount of degradation products left. |
---|---|
AbstractList | Biodiesel and single cell oils obtained from oleaginous yeasts grown in industrial waste are attractive alternatives to the conventional fuels. However, there are only few articles dealing with the stability of the microbial biofuels. Hence, this study aimed at characterizing the storage time of biodiesels using Rancimat methods. The microbial oil and the biodiesel obtained from microbial oil have been characterized with storage stability due to various oxidizing and thermal damage. Here, the microbial fuels were subject to Rancimat analysis and found to have high thermal-oxidative stability of 18 and 8.78 h for biodiesel and oil, respectively. The storage stability resulting from storage conditions was extrapolated for biodiesel and oil and has been found to be 1.62 and 0.54 years, respectively. The infrared spectroscopic analysis reveals the degree of oxidation found after the induction time was reached and shows the characteristic peaks for degradation products. Gas chromatography revealed the compounds that were responsible for the stability as well as the amount of degradation products left. Biodiesel and single cell oils obtained from oleaginous yeasts grown in industrial waste are attractive alternatives to the conventional fuels. However, there are only few articles dealing with the stability of the microbial biofuels. Hence, this study aimed at characterizing the storage time of biodiesels using Rancimat methods. The microbial oil and the biodiesel obtained from microbial oil have been characterized with storage stability due to various oxidizing and thermal damage. Here, the microbial fuels were subject to Rancimat analysis and found to have high thermal-oxidative stability of 18 and 8.78 h for biodiesel and oil, respectively. The storage stability resulting from storage conditions was extrapolated for biodiesel and oil and has been found to be 1.62 and 0.54 years, respectively. The infrared spectroscopic analysis reveals the degree of oxidation found after the induction time was reached and shows the characteristic peaks for degradation products. Gas chromatography revealed the compounds that were responsible for the stability as well as the amount of degradation products left.Biodiesel and single cell oils obtained from oleaginous yeasts grown in industrial waste are attractive alternatives to the conventional fuels. However, there are only few articles dealing with the stability of the microbial biofuels. Hence, this study aimed at characterizing the storage time of biodiesels using Rancimat methods. The microbial oil and the biodiesel obtained from microbial oil have been characterized with storage stability due to various oxidizing and thermal damage. Here, the microbial fuels were subject to Rancimat analysis and found to have high thermal-oxidative stability of 18 and 8.78 h for biodiesel and oil, respectively. The storage stability resulting from storage conditions was extrapolated for biodiesel and oil and has been found to be 1.62 and 0.54 years, respectively. The infrared spectroscopic analysis reveals the degree of oxidation found after the induction time was reached and shows the characteristic peaks for degradation products. Gas chromatography revealed the compounds that were responsible for the stability as well as the amount of degradation products left. Biodiesel and single cell oils obtained from oleaginous yeasts grown in industrial waste are attractive alternatives to the conventional fuels. However, there are only few articles dealing with the stability of the microbial biofuels. Hence, this study aimed at characterizing the storage time of biodiesels using Rancimat methods. The microbial oil and the biodiesel obtained from microbial oil have been characterized with storage stability due to various oxidizing and thermal damage. Here, the microbial fuels were subject to Rancimat analysis and found to have high thermal-oxidative stability of 18 and 8.78 h for biodiesel and oil, respectively. The storage stability resulting from storage conditions was extrapolated for biodiesel and oil and has been found to be 1.62 and 0.54 years, respectively. The infrared spectroscopic analysis reveals the degree of oxidation found after the induction time was reached and shows the characteristic peaks for degradation products. Gas chromatography revealed the compounds that were responsible for the stability as well as the amount of degradation products left. |
Author | Tamilalagan, Anbarasan Singaram, Jayanthi |
Author_xml | – sequence: 1 givenname: Anbarasan orcidid: 0000-0002-4546-3039 surname: Tamilalagan fullname: Tamilalagan, Anbarasan email: anbarasan@gct.ac.in organization: Government College of Technology – sequence: 2 givenname: Jayanthi surname: Singaram fullname: Singaram, Jayanthi organization: Government College of Engineering |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30506440$$D View this record in MEDLINE/PubMed |
BookMark | eNqNks2K1jAUhoOMON-MXoAbCbhxU03a9Oe4k8E_GBgQXYfT9PSbDG1Tk3SwO29BvEOvxMx0PoQBxVU2z_NyePOesKPJTcTYUyleSiHqV0HKoqwyIZusqCRk8gHbyUqqrFYAR2wnQKlMFkods5MQroTIBeT1I3ZciFJUSokd-3HxzXYYrZt4iNjawcaVu56vhCHy1rrOUqCBL8FOe_4JJ2NHjBwnHNZgw2t-jcMhYGPs1Hv01PEwk4neBePmNQkd32Pg5tK7FOD2HufL9df3nyOGcEBHin59zB72OAR6cveesi_v3n4--5CdX7z_ePbmPDNKqZj1aHIE7AGUEH2jmq4FMmUJdUOgelCSajQVVIYkyU4CNXnfQtsLUq2ssDhlL7bc2buvC4WoRxsMDQNO5Jagc9lAKUuA-j9QBSLPc1Um9Pk99MotPrV1S4lCQTo1Uc_uqKUdqdOzT636VR_-JQH1BphUYPDUa2PjbcvRox20FPpmAXpbgE4L0DcL0DKZ8p55CP-Xk29OSOy0J__n6L9LvwHQ7cbn |
CitedBy_id | crossref_primary_10_1016_j_fuel_2020_118614 crossref_primary_10_3390_pr9010174 crossref_primary_10_1016_j_indcrop_2024_118321 crossref_primary_10_1007_s43153_023_00327_w crossref_primary_10_1007_s11356_021_18086_x crossref_primary_10_1016_j_biortech_2023_128787 crossref_primary_10_1016_j_jclepro_2023_136595 |
Cites_doi | 10.1016/j.rser.2009.10.009 10.1016/S0360-1285(97)00034-8 10.1186/1754-6834-7-12 10.1111/j.1365-313X.2008.03492.x 10.1016/0043-1354(80)90097-4 10.1016/0003-2697(78)90046-5 10.1016/j.foodchem.2017.11.042 10.1016/S0021-9673(02)01691-6 10.1155/2016/7583684 10.1039/c3an00485f 10.1590/S0103-50532012001200004 10.1007/s11746-006-5051-9 10.1016/j.biortech.2010.01.065 10.1016/j.fuproc.2011.12.036 10.1016/j.biortech.2012.02.004 10.1007/s12010-018-2777-4 10.1186/1475-2859-11-71 10.1016/j.fuproc.2007.01.006 10.1007/BF02636102 10.1016/j.apenergy.2009.09.006 10.1002/ejlt.201100014 10.1016/S0922-338X(97)87331-X 10.1016/j.resconrec.2007.05.003 10.1016/j.fuproc.2004.10.001 10.3389/fenrg.2014.00061 10.1139/y59-099 10.1016/j.algal.2012.02.001 10.1021/acssynbio.7b00453 10.1016/j.biortech.2008.06.039 10.1186/1754-6834-7-34 10.3844/ajbbsp.2008.250.254 10.1016/j.biortech.2014.01.111 10.1002/ejlt.200400978 10.1016/j.rser.2012.06.024 10.1016/j.biortech.2014.09.047 10.1016/j.indcrop.2012.07.046 10.1016/j.copbio.2015.09.005 10.1080/09593330.2013.827730 10.1007/s12206-016-1248-5 10.1016/j.joei.2018.02.006 10.1007/s11274-008-9664-z 10.1016/j.biombioe.2008.09.006 10.1016/j.biortech.2015.08.039 10.1021/bk-1997-0666.ch010 10.1016/j.fuel.2013.08.045 10.1016/j.rser.2015.12.007 10.1002/bbb.83 10.1016/j.resconrec.2004.04.016 10.3389/fenrg.2014.00057 10.1007/s11356-018-1241-x 10.1111/jam.13633 |
ContentType | Journal Article |
Copyright | Springer-Verlag GmbH Germany, part of Springer Nature 2018 Environmental Science and Pollution Research is a copyright of Springer, (2018). All Rights Reserved. |
Copyright_xml | – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2018 – notice: Environmental Science and Pollution Research is a copyright of Springer, (2018). All Rights Reserved. |
DBID | AAYXX CITATION NPM 3V. 7QL 7SN 7T7 7TV 7U7 7WY 7WZ 7X7 7XB 87Z 88E 88I 8AO 8C1 8FD 8FI 8FJ 8FK 8FL ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BEZIV BHPHI C1K CCPQU DWQXO FR3 FRNLG FYUFA F~G GHDGH GNUQQ HCIFZ K60 K6~ K9. L.- M0C M0S M1P M2P M7N P64 PATMY PHGZM PHGZT PJZUB PKEHL PPXIY PQBIZ PQBZA PQEST PQQKQ PQUKI PRINS PYCSY Q9U 7X8 7S9 L.6 |
DOI | 10.1007/s11356-018-3619-1 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Ecology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Pollution Abstracts Toxicology Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) Health & Medical Collection (ProQuest) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Engineering Research Database Business Premium Collection (Alumni) Proquest Health Research Premium Collection ABI/INFORM Global (Corporate) Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection ProQuest Health & Medical Complete (Alumni) ABI/INFORM Professional Advanced ABI/INFORM Global ProQuest Health & Medical Collection Medical Database Science Database (ProQuest) Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Environmental Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Environmental Science Collection ProQuest Central Basic MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Business Collection (Alumni Edition) ProQuest Central Student ProQuest Central Essentials SciTech Premium Collection ProQuest Central China ABI/INFORM Complete Environmental Sciences and Pollution Management ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Business Premium Collection ABI/INFORM Global ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Business Collection Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Pollution Abstracts ProQuest Pharma Collection ProQuest Central ABI/INFORM Professional Advanced ProQuest Health & Medical Research Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection ABI/INFORM Complete (Alumni Edition) ProQuest Public Health ABI/INFORM Global (Alumni Edition) ProQuest Central Basic Toxicology Abstracts ProQuest Science Journals ProQuest Medical Library ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic ProQuest Business Collection (Alumni Edition) PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Environmental Sciences |
EISSN | 1614-7499 |
EndPage | 3090 |
ExternalDocumentID | 30506440 10_1007_s11356_018_3619_1 |
Genre | Journal Article |
GroupedDBID | --- -5A -5G -5~ -BR -EM -~C .VR 06D 0R~ 0VY 199 1N0 203 29G 2J2 2JN 2JY 2KG 2KM 2LR 2~H 30V 4.4 406 408 409 40D 40E 4P2 5GY 5VS 67M 67Z 6NX 78A 7WY 7X7 7XC 88E 88I 8AO 8C1 8FE 8FH 8FI 8FJ 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANZL AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABUWG ABWNU ABXPI ACAOD ACDTI ACGFO ACGFS ACGOD ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACREN ACSNA ACSVP ACZOJ ADBBV ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFKRA AFLOW AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATCPS AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BDATZ BENPR BEZIV BGNMA BHPHI BPHCQ BVXVI CCPQU CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBD EBLON EBS EDH EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC FYUFA GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Y I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6~ KDC KOV L8X LAS LLZTM M0C M1P M2P M4Y MA- ML. N9A NB0 NF0 NPVJJ NQJWS NU0 O93 O9G O9I O9J OAM P19 P2P PATMY PF0 PQBIZ PQBZA PQQKQ PROAC PSQYO PT4 PT5 PYCSY Q2X QOK QOS R89 R9I RHV RNS ROL RSV S16 S27 S3B SAP SDH SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC TUS U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z85 Z86 Z87 Z8P Z8Q Z8S ZMTXR ~02 ~KM -Y2 2.D 2P1 2VQ 53G AAPKM AARHV AAYTO AAYXX ABBRH ABDBE ABFSG ABQSL ABULA ACBXY ACMFV ACSTC ADHKG AEBTG AEKMD AEZWR AFDZB AFGCZ AFHIU AFOHR AGGDS AGQPQ AHPBZ AHWEU AIXLP AJBLW ATHPR AYFIA BBWZM BSONS CAG CITATION COF H13 N2Q NDZJH O9- PHGZM PHGZT RNI RZK S1Z S26 S28 SCK SCLPG T16 WK6 Y6R NPM 3V. 7QL 7SN 7T7 7TV 7U7 7XB 8FD 8FK ABRTQ C1K FR3 K9. L.- M7N P64 PJZUB PKEHL PPXIY PQEST PQUKI PRINS Q9U 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c444t-fac2a9af99400f848db9ec55978e94f941e7ac696ce1e1d19e82fb9bf0e4b16a3 |
IEDL.DBID | U2A |
ISSN | 0944-1344 1614-7499 |
IngestDate | Tue Aug 05 10:47:36 EDT 2025 Thu Jul 10 22:53:24 EDT 2025 Fri Jul 25 20:20:20 EDT 2025 Thu Apr 03 07:03:11 EDT 2025 Thu Apr 24 23:11:07 EDT 2025 Tue Jul 01 01:11:54 EDT 2025 Fri Feb 21 02:34:17 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Induction time Microbial biodiesel Thermal oxidative stability Fourier-transform infrared spectroscopy Storage stability Gas chromatography–mass spectrometry |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c444t-fac2a9af99400f848db9ec55978e94f941e7ac696ce1e1d19e82fb9bf0e4b16a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-4546-3039 |
PMID | 30506440 |
PQID | 2140349848 |
PQPubID | 54208 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_2189515997 proquest_miscellaneous_2149022245 proquest_journals_2140349848 pubmed_primary_30506440 crossref_citationtrail_10_1007_s11356_018_3619_1 crossref_primary_10_1007_s11356_018_3619_1 springer_journals_10_1007_s11356_018_3619_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-01-01 |
PublicationDateYYYYMMDD | 2019-01-01 |
PublicationDate_xml | – month: 01 year: 2019 text: 2019-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Germany – name: Heidelberg |
PublicationTitle | Environmental science and pollution research international |
PublicationTitleAbbrev | Environ Sci Pollut Res |
PublicationTitleAlternate | Environ Sci Pollut Res Int |
PublicationYear | 2019 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Engines (2013) Requirements and test methods data on cold flow properties pour points. fuel ThliverosPUçkun KiranEWebbCMicrobial biodiesel production by direct methanolysis of oleaginous biomassBioresour Technol201415718118710.1016/j.biortech.2014.01.1111:CAS:528:DC%2BC2cXmslais7s%3D NatarajanEStability studies of biodieselIJES201224152155 StefaniaVCastelloteAIPizzaleLConteLSBuxaderasbSLo’pez-TamamesEAnalysis of virgin olive oil volatile compounds by headspace solid-phase micro extraction coupled to gas chromatography with mass spectrometric and flame ionization detectionJ Chromatography A2003983193310.1016/S0021-9673(02)01691-6 MarinkovicDMStankovicMVVelickovicAVAvramovicJMMiladinovicMRStamenkovicOOVeljkovicVBJovanovicDMCalcium oxide as a promising heterogeneous catalyst for biodiesel production: current state and perspectivesRenew Sus Egy Rev2016561387140810.1016/j.rser.2015.12.0071:CAS:528:DC%2BC28XhtFGhsQ%3D%3D GalafassiSCucchettiDPizzaFFranzosiGBianchiDCompagnoCLipid production for second generation biodiesel by the oleaginous yeast Rhodotorula graminisBioresour Technol201211139840310.1016/j.biortech.2012.02.0041:CAS:528:DC%2BC38XksFWlsbg%3D PatelDSindhuKAroraNSinghRPPruthiVPruthiPABiodiesel production from non-edible lignocellulosic biomass of Cassia fistula L. fruit pulp using oleaginous yeast Rhodosporidium kratochvilovae HIMPA1Bioresour Technol2015197919810.1016/j.biortech.2015.08.0391:CAS:528:DC%2BC2MXhsVSjsLrF HirutaOYamamuraKTakebeHFutamuraTIinumaKTanakaHApplication of Maxblend fermenter for microbial processesJ Ferment Bioeng1997831798610.1016/S0922-338X(97)87331-X1:CAS:528:DyaK2sXhtVOltL0%3D AthenakiMGardeliCDiamantopoulouPTchakouteuSSSarrisDPhilippoussisALipids from yeasts and fungi: physiology, production and analytical considerations201710.1111/jam.13633 BrennanLOwendePBiofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-productsRenew Sust Energ Rev20101455757710.1016/j.rser.2009.10.0091:CAS:528:DC%2BD1MXhsF2isbvK DeanAPSigeeDCEstradaBPittmanJKUsing FTIR spectroscopy for rapid determination of lipid accumulation in response to nitrogen limitation in freshwater microalgaeBioresour Technol20101014499450710.1016/j.biortech.2010.01.0651:CAS:528:DC%2BC3cXjt1KrtLg%3D GaoCZhaiYDingYWuQApplication of sweet sorghum for biodiesel production by heterotrophic Chlorella protothecoidesAppl Egy20108775676110.1016/j.apenergy.2009.09.0061:CAS:528:DC%2BD1MXhsV2jt77K KlensporfDJeleñHHAnalysis of volatile aldehydes in oat flakes by SPME-GC/MSPol J Food Nutr Sci200514/554389395 KhotMKamatSZinjardeSPantAChopadeBRavi KumarASingle cell oil of oleaginous fungi from the tropical mangrove wetlands as a potential feedstock for biodieselMicrobe Cell Fact2012117110.1186/1475-2859-11-711:CAS:528:DC%2BC38XhvVSrsbzI Hardon H, K Zürcher Dtsch. Lebensm.-Rudsch (1974) 70:57 BondioliPGasparoliALanzaniAFedeliEVeroneseSSalaMStorage stability of biodieselIbid200172699 GaoQCaoXHuangYYYangJLChenJWeiLJHuaQACS. Overproduction of fatty acid ethyl esters by the oleaginous yeast Yarrowia lipolytica through metabolic engineering and process optimizationSynth Biol2018751371138010.1021/acssynbio.7b004531:CAS:528:DC%2BC1cXot1Oktrs%3D DoshiVAVuthaluruHBBastowTInvestigations into the control of odour and viscosity of biomass oil derived from pyrolysis of sewage sludgeFuel Process Technol20058688859710.1016/j.fuproc.2004.10.0011:CAS:528:DC%2BD2MXisFagurs%3D International Energy Organization 2013 and 2016 (2015) DunnROOxidative Stability of Biodiesel By Dynamic Mode Pressurized−Differential Scanning Calorimetry (P−Dsc)Am Soc Agric Biol Eng2006495163316411:CAS:528:DC%2BD28XhtlWhurzF LohaSChewbSChooaYOxidative stability and storage behavior of fatty acid methyl esters derived from used palm oilJ Am Oil Chemists’ Soc2006831194795210.1007/s11746-006-5051-9 GoudaMKOmarSHAouadLMSingle cell oil production by Gordonia sp. DG using agro-industrial wastesWorld J Microbiol Biotech2008241703171110.1007/s11274-008-9664-z1:CAS:528:DC%2BD1cXptVekt7w%3D SantamauroFWhiffinFMScottRJChuckCJLow-cost lipid production by an oleaginous yeast cultured in non-sterile conditions using model waste resourcesBiotech for Biofuels201473410.1186/1754-6834-7-341:CAS:528:DC%2BC2MXjsVejuro%3D PullenJSaeedKAn overview of biodiesel oxidation stabilityRenew Sust Energ Rev20121685924595010.1016/j.rser.2012.06.0241:CAS:528:DC%2BC38XhsVarsL%2FI FakasSPapanikolaouSBatsosAPanayotoumgMallouchoAAggelisGEvaluating renewable carbon sources as substrates for single cell oil production by Cunninghamella echinulata and Mortierella isabellinaBiomass Bioenergy20093357358010.1016/j.biombioe.2008.09.0061:CAS:528:DC%2BD1MXjtVSnurw%3D Robert O. Dunn (2008) Antioxidants for improving storage stability of biodiesel. Biofuels, Bioproducts and Biorefining 2 (4):304–318 WillianTWBariccattiRAMartinsGISeccoDde SouzaSNMRosaHAChavesLIStudy of the methyl crambe (Crambe abyssinica Hochst) and soybean biodiesel oxidative stabilityInd Crops Prod20134320721210.1016/j.indcrop.2012.07.0461:CAS:528:DC%2BC38XhsFSqsbvK LingJNipSCheokWLde ToledoRAShimHLipid production by a mixed culture of oleaginous yeast and microalga from distillery and domestic mixed wastewaterBioresour Technol201417313213910.1016/j.biortech.2014.09.0471:CAS:528:DC%2BC2cXhs1eitLzK AnbarasanTReginaYInvestigation on synthesis of biodiesel from distillery spent wash using oleaginous yeast Metschnikowia pulcherrimaInter J of Appl Engg Res20151067310314(2015) Research India Publications WestbrookSRFuels for land and marine diesel engines and for non-aviation gas turbinesSignificance of tests for petroleum products, 7th edn2003West Conshohocken, PAASTM International638111 AmiDPosteriRMereghettiPPorroDDogliaSMBranduardiPFourier transform infrared spectroscopy as a method to study lipid accumulation in oleaginous yeastsBiotech for Biofuels201471210.1186/1754-6834-7-121:CAS:528:DC%2BC2MXjsFaqtrs%3D Knothe G, Dunn RO (2001) Biofuels derived from vegetable oils and fats, in oleo chemical manufacture and applications. pp. 106–163 Bellou S, Triantaphyllidou I, Aggeli D, Elazzazy AM, Baeshen MN, Aggelis G (2016) ScienceDirect Microbial oils as food additives : recent approaches for improving microbial oil production and its polyunsaturated fatty acid content. Curr Opin Biotechnol 37:24–35. https://doi.org/10.1016/j.copbio.2015.09.005 McCormickRLRatcliffMMoensLLawrenceRSeveral factors affecting the stability of biodiesel in standard accelerated testsFuel Proces Tech200788765165710.1016/j.fuproc.2007.01.0061:CAS:528:DC%2BD2sXltFygtLs%3D Whiffin F (2015). A palm oil substitute and care product emulsions from a yeast cultivated on waste resources. Thesis (doctor of philosophy (PhD)). University of Bath. http://opus.bath.ac.uk/view/person_id/6097.html HuQSommerfeldMJarvisEGhirardiMPosewitzMSeibertMDarzinsAMicro algal triacylglycerols as feedstocks for biofuel production: perspectives and advancesPlant J20085462163910.1111/j.1365-313X.2008.03492.x1:CAS:528:DC%2BD1cXmvFKgsrs%3D ZuletaECBaenaLRiosaLACalderónJAThe oxidative stability of biodiesel and its impact on the deterioration of metallic and polymeric materials: a reviewJ Braz Chem Soc201223122159217510.1590/S0103-505320120012000041:CAS:528:DC%2BC3sXjsFanu7s%3D BlighDyerNeutral lipid extraction by the method of Bligh–DyerCan J Biochem Physiol19593792210.1139/y59-099 FalkOMeyer-PittroffRThe effect of fatty acid composition on biodiesel oxidative stabilityEur J Lipid Sci Technol20041061283784310.1002/ejlt.2004009781:CAS:528:DC%2BD2MXhslCmuw%3D%3D VongsvivutJHeraudPGuptaAPuriMMcNaughtonDBarrowCJFTIR micro spectroscopy for rapid screening and monitoring of polyunsaturated fatty acid production in commercially valuable marine yeasts and protistsAnalyst20131386016603110.1039/c3an00485f1:CAS:528:DC%2BC3sXhsVCgtbbL Peer MS, Kasimani R, Rajamohan S, Ramakrishnan P (2017) Experimental evaluation on oxidation stability of biodiesel/diesel blends with alcohol addition by Rancimat instrument and FTIR spectroscopy†, 31(1), 455–463. https://doi.org/10.1007/s12206-016-1248-5 RamosMJMaria FernandezCMCasasARodriguezLPerez A. Influence of fatty acid composition of raw materials on biodiesel propertiesBioresour Technol2009100126126810.1016/j.biortech.2008.06.0391:CAS:528:DC%2BD1cXhtFemtLrF HasenhuettiGLWanPJTemperature effects on the determination of oxidative stability with the Metrohm RancimatJ Am Oil Chem Soc19926952510.1007/BF02636102 HossainABMSSallehABiodiesel fuel production from algae as renewable energyAm J Biochem Biotech20084325025410.3844/ajbbsp.2008.250.2541:CAS:528:DC%2BD1cXht1aitL3N Koutinas AA, Chatzifragkou A, Kopsahelis N, Papanikolaou S, Kookos IK. (2014) Design and techno-economic evaluation of microbial oil production as a renewable resource for biodiesel and oleochemical production. FUEL 116:566–77. https://doi.org/10.1016/j.fuel.2013.08.045 TewariPKBatraVSBalakrishnanMWater management initiatives in sugarcane molasses based distilleries in IndiaRes Conserv Recycl20075235136710.1016/j.resconrec.2007.05.003 BSI, BSEN14214 (2008) Automotive fuels—fatty acid methyl esters (FAME) for diesel engines—requirements and test methods. 2008. GraboskiMSMcCormickRLCombustion of fat and vegetable oil derived fuels in diesel enginesProg Egy Combust Sci19982412516410.1016/S0360-1285(97)00034-81:CAS:528:DyaK1cXjtFeju7w%3D Ranjith Kumar R, Hanumantha Rao P, Arumugam M (2015) Lipid Extraction Methods from Microalgae: A Comprehensive Review. Front Energy Res [Internet] 2(January):1–9. Available from: http://journal.frontiersin.org/article/10.3389/fenrg.2014.00061/abstract BucyHBBaumgardnerMEMarcheseAJChemical and physical properties of algal methyl ester biodiesel containing varying levels of methyl eicosapentaenoate and methyl docosahexaenoateAlgal Res201211576910.1016/j.algal.2012.02.0011:CAS:528:DC%2BC38Xht1SqsbnL KolouchováMaťátkováOSiglerKMasákJŘezankaTProduction of palmitoleic and linoleic acid in oleaginous and nonoleaginous yeast biomassInt J Anal Chem201620161810.1155/2016/75836841:CAS:528:DC%2BC1cXnvFyjtrg%3D Siddha M Khot (3619_CR33) 2012; 11 MJ Ramos (3619_CR52) 2009; 100 J Vongsvivut (3619_CR65) 2013; 138 S Loha (3619_CR40) 2006; 83 Q Hu (3619_CR31) 2008; 54 3619_CR53 MS Graboski (3619_CR24) 1998; 24 3619_CR54 P Bondioli (3619_CR7) 2001; 72 G Knothe (3619_CR36) 1997 3619_CR56 3619_CR14 3619_CR17 3619_CR18 Kolouchová (3619_CR37) 2016; 2016 M Athenaki (3619_CR4) 2017 PK Tewari (3619_CR62) 2007; 52 Bligh (3619_CR6) 1959; 37 Q Gao (3619_CR21) 2018; 7 HB Bucy (3619_CR10) 2012; 1 V Stefania (3619_CR61) 2003; 983 D Patel (3619_CR48) 2015; 197 TW Willian (3619_CR68) 2013; 43 P Selvakumar (3619_CR58) 2018; 186 RO Dunn (3619_CR13) 2006; 49 C Gao (3619_CR20) 2010; 87 VA Doshi (3619_CR12) 2005; 86 O Falk (3619_CR16) 2004; 106 RL McCormick (3619_CR44) 2007; 88 3619_CR64 3619_CR22 J Ling (3619_CR39) 2014; 173 3619_CR67 3619_CR26 D Klensporf (3619_CR34) 2005; 14/55 3619_CR69 ABMS Hossain (3619_CR30) 2008; 4 S Galafassi (3619_CR19) 2012; 111 GL Hasenhuetti (3619_CR27) 1992; 69 DM Marinkovic (3619_CR43) 2016; 56 SK Hoekman (3619_CR29) 2012; 96 D Ami (3619_CR2) 2014; 7 P Thliveros (3619_CR63) 2014; 157 O Hiruta (3619_CR28) 1997; 83 GJ Sheehan (3619_CR59) 1980; 14 AP Dean (3619_CR11) 2010; 101 3619_CR32 3619_CR35 S Mandal (3619_CR42) 2013; 34 3619_CR38 EC Zuleta (3619_CR70) 2012; 23 J Siddharth (3619_CR60) 2011; 2 S Fakas (3619_CR15) 2009; 33 F Santamauro (3619_CR57) 2014; 7 MK Gouda (3619_CR23) 2008; 24 T Anbarasan (3619_CR3) 2015; 10 J Pullen (3619_CR50) 2012; 16 3619_CR5 3619_CR51 3619_CR9 NK Saha (3619_CR55) 2005; 43 E Natarajan (3619_CR46) 2012; 2 L Brennan (3619_CR8) 2010; 14 A Hara (3619_CR25) 1978; 90 3619_CR45 3619_CR1 3619_CR47 M Lucarini (3619_CR41) 2018; 267 3619_CR49 SR Westbrook (3619_CR66) 2003 |
References_xml | – reference: GalafassiSCucchettiDPizzaFFranzosiGBianchiDCompagnoCLipid production for second generation biodiesel by the oleaginous yeast Rhodotorula graminisBioresour Technol201211139840310.1016/j.biortech.2012.02.0041:CAS:528:DC%2BC38XksFWlsbg%3D – reference: Fame En 14214 (2012) + a1 : 2014. 2014;14214. – reference: GaoQCaoXHuangYYYangJLChenJWeiLJHuaQACS. Overproduction of fatty acid ethyl esters by the oleaginous yeast Yarrowia lipolytica through metabolic engineering and process optimizationSynth Biol2018751371138010.1021/acssynbio.7b004531:CAS:528:DC%2BC1cXot1Oktrs%3D – reference: TewariPKBatraVSBalakrishnanMWater management initiatives in sugarcane molasses based distilleries in IndiaRes Conserv Recycl20075235136710.1016/j.resconrec.2007.05.003 – reference: GaoCZhaiYDingYWuQApplication of sweet sorghum for biodiesel production by heterotrophic Chlorella protothecoidesAppl Egy20108775676110.1016/j.apenergy.2009.09.0061:CAS:528:DC%2BD1MXhsV2jt77K – reference: HossainABMSSallehABiodiesel fuel production from algae as renewable energyAm J Biochem Biotech20084325025410.3844/ajbbsp.2008.250.2541:CAS:528:DC%2BD1cXht1aitL3N – reference: Koutinas AA, Chatzifragkou A, Kopsahelis N, Papanikolaou S, Kookos IK. (2014) Design and techno-economic evaluation of microbial oil production as a renewable resource for biodiesel and oleochemical production. FUEL 116:566–77. https://doi.org/10.1016/j.fuel.2013.08.045 – reference: ZuletaECBaenaLRiosaLACalderónJAThe oxidative stability of biodiesel and its impact on the deterioration of metallic and polymeric materials: a reviewJ Braz Chem Soc201223122159217510.1590/S0103-505320120012000041:CAS:528:DC%2BC3sXjsFanu7s%3D – reference: VongsvivutJHeraudPGuptaAPuriMMcNaughtonDBarrowCJFTIR micro spectroscopy for rapid screening and monitoring of polyunsaturated fatty acid production in commercially valuable marine yeasts and protistsAnalyst20131386016603110.1039/c3an00485f1:CAS:528:DC%2BC3sXhsVCgtbbL – reference: KnotheGDunnROBagbyMOSahaBCWoodwardJBiodiesel: the use of vegetable oils and their derivatives as alternative diesel fuelsACS Symposium Series No. 666: Fuels and Chemicals from Biomass1997Washington, DCACS17220810.1021/bk-1997-0666.ch010 – reference: Xiao-ying LI, Xiao-an NIE, Jie C, Yi-gang W (2015) The development tendency and research statues of microbial oil for biodiesel production. 4(4):137–43 – reference: Papanikolaou S, Aggelis G (2011) Review article lipids of oleaginous yeasts. Part I: biochemistry of single cell oil production. 1031–1051. https://doi.org/10.1002/ejlt.201100014 – reference: WestbrookSRFuels for land and marine diesel engines and for non-aviation gas turbinesSignificance of tests for petroleum products, 7th edn2003West Conshohocken, PAASTM International638111 – reference: FakasSPapanikolaouSBatsosAPanayotoumgMallouchoAAggelisGEvaluating renewable carbon sources as substrates for single cell oil production by Cunninghamella echinulata and Mortierella isabellinaBiomass Bioenergy20093357358010.1016/j.biombioe.2008.09.0061:CAS:528:DC%2BD1MXjtVSnurw%3D – reference: HuQSommerfeldMJarvisEGhirardiMPosewitzMSeibertMDarzinsAMicro algal triacylglycerols as feedstocks for biofuel production: perspectives and advancesPlant J20085462163910.1111/j.1365-313X.2008.03492.x1:CAS:528:DC%2BD1cXmvFKgsrs%3D – reference: PullenJSaeedKAn overview of biodiesel oxidation stabilityRenew Sust Energ Rev20121685924595010.1016/j.rser.2012.06.0241:CAS:528:DC%2BC38XhsVarsL%2FI – reference: SheehanGJGreenfieldPFUtilization, treatment and disposal of distillery wastewaterWater Res198014325727710.1016/0043-1354(80)90097-41:CAS:528:DyaL3cXkslyqsr0%3D – reference: Rajamohan S, Kasimani R (2018) Analytical characterization of products obtained from slow pyrolysis of Calophyllum inophyllum seed cake: study on performance and emission characteristics of direct injection diesel engine fuelled with bio-oil blends. 25(10), 9523–9538. https://doi.org/10.1007/s11356-018-1241-x – reference: Giles HH (2003) Methods for assessing stability and cleanliness of liquid fuels. In: Rand SJ (ed). Significance of Tests for Petroleum Products, 7th edn. American Society for Testing and Materials, West Conshohocken, pp 108−117 – reference: LingJNipSCheokWLde ToledoRAShimHLipid production by a mixed culture of oleaginous yeast and microalga from distillery and domestic mixed wastewaterBioresour Technol201417313213910.1016/j.biortech.2014.09.0471:CAS:528:DC%2BC2cXhs1eitLzK – reference: McCormickRLRatcliffMMoensLLawrenceRSeveral factors affecting the stability of biodiesel in standard accelerated testsFuel Proces Tech200788765165710.1016/j.fuproc.2007.01.0061:CAS:528:DC%2BD2sXltFygtLs%3D – reference: DeanAPSigeeDCEstradaBPittmanJKUsing FTIR spectroscopy for rapid determination of lipid accumulation in response to nitrogen limitation in freshwater microalgaeBioresour Technol20101014499450710.1016/j.biortech.2010.01.0651:CAS:528:DC%2BC3cXjt1KrtLg%3D – reference: FalkOMeyer-PittroffRThe effect of fatty acid composition on biodiesel oxidative stabilityEur J Lipid Sci Technol20041061283784310.1002/ejlt.2004009781:CAS:528:DC%2BD2MXhslCmuw%3D%3D – reference: BlighDyerNeutral lipid extraction by the method of Bligh–DyerCan J Biochem Physiol19593792210.1139/y59-099 – reference: StefaniaVCastelloteAIPizzaleLConteLSBuxaderasbSLo’pez-TamamesEAnalysis of virgin olive oil volatile compounds by headspace solid-phase micro extraction coupled to gas chromatography with mass spectrometric and flame ionization detectionJ Chromatography A2003983193310.1016/S0021-9673(02)01691-6 – reference: BondioliPGasparoliALanzaniAFedeliEVeroneseSSalaMStorage stability of biodieselIbid200172699 – reference: Forough GN, Thomas-Hall SR, Ratnam RD, Pratt S, Schenk PM (2014) Comparative effects of biomass pre-treatments for direct and indirect transesterification to enhance micro algal lipid recovery. Front. Energy Res https://doi.org/10.3389/fenrg.2014.00057 – reference: HasenhuettiGLWanPJTemperature effects on the determination of oxidative stability with the Metrohm RancimatJ Am Oil Chem Soc19926952510.1007/BF02636102 – reference: HirutaOYamamuraKTakebeHFutamuraTIinumaKTanakaHApplication of Maxblend fermenter for microbial processesJ Ferment Bioeng1997831798610.1016/S0922-338X(97)87331-X1:CAS:528:DyaK2sXhtVOltL0%3D – reference: AnbarasanTReginaYInvestigation on synthesis of biodiesel from distillery spent wash using oleaginous yeast Metschnikowia pulcherrimaInter J of Appl Engg Res20151067310314(2015) Research India Publications; – reference: DoshiVAVuthaluruHBBastowTInvestigations into the control of odour and viscosity of biomass oil derived from pyrolysis of sewage sludgeFuel Process Technol20058688859710.1016/j.fuproc.2004.10.0011:CAS:528:DC%2BD2MXisFagurs%3D – reference: Turton GC, Wardlaw AC (1987). Pathogenicity of the marine yeasts Metschnikowia zobelli and Rhodotorula rubra for the sea urchin Echinus esculentus. Aquaculture. 67(1–2):199–202. – reference: DunnROOxidative Stability of Biodiesel By Dynamic Mode Pressurized−Differential Scanning Calorimetry (P−Dsc)Am Soc Agric Biol Eng2006495163316411:CAS:528:DC%2BD28XhtlWhurzF – reference: Bellou S, Triantaphyllidou I, Aggeli D, Elazzazy AM, Baeshen MN, Aggelis G (2016) ScienceDirect Microbial oils as food additives : recent approaches for improving microbial oil production and its polyunsaturated fatty acid content. Curr Opin Biotechnol 37:24–35. https://doi.org/10.1016/j.copbio.2015.09.005 – reference: SelvakumarPSivashanmugamPStudy on lipid accumulation in novel oleaginous yeast Naganishia liquefaciens NITTS2 utilizing pre-digested municipal waste activated sludge: a low-cost feedstock for biodiesel productionAppl Biochem Biotech2018186373174910.1007/s12010-018-2777-41:CAS:528:DC%2BC1cXptVWqu7c%3D – reference: RamosMJMaria FernandezCMCasasARodriguezLPerez A. Influence of fatty acid composition of raw materials on biodiesel propertiesBioresour Technol2009100126126810.1016/j.biortech.2008.06.0391:CAS:528:DC%2BD1cXhtFemtLrF – reference: GoudaMKOmarSHAouadLMSingle cell oil production by Gordonia sp. DG using agro-industrial wastesWorld J Microbiol Biotech2008241703171110.1007/s11274-008-9664-z1:CAS:528:DC%2BD1cXptVekt7w%3D – reference: Whiffin F (2015). A palm oil substitute and care product emulsions from a yeast cultivated on waste resources. Thesis (doctor of philosophy (PhD)). University of Bath. http://opus.bath.ac.uk/view/person_id/6097.html – reference: HoekmanSKRobbinsCReview of the effects of biodiesel on NOx emissionsFuel Process Technol20129623724910.1016/j.fuproc.2011.12.0361:CAS:528:DC%2BC38XislOktr0%3D – reference: LucariniMDurazzoASánchez del PulgarJGabrielliPLombardi-BocciaGDetermination of fatty acid content in meat and meat products: the FTIR-ATR approachFood Chem201826722323010.1016/j.foodchem.2017.11.0421:CAS:528:DC%2BC2sXhvVCjtLrM – reference: Knothe G, Dunn RO (2001) Biofuels derived from vegetable oils and fats, in oleo chemical manufacture and applications. pp. 106–163 – reference: HaraARadinNSLipid extraction of tissues with a low-toxicity solventAnal Biochem197890142042610.1016/0003-2697(78)90046-51:CAS:528:DyaE1cXmtFWmsL0%3D – reference: LohaSChewbSChooaYOxidative stability and storage behavior of fatty acid methyl esters derived from used palm oilJ Am Oil Chemists’ Soc2006831194795210.1007/s11746-006-5051-9 – reference: Peer MS, Kasimani R, Rajamohan S, Ramakrishnan P (2017) Experimental evaluation on oxidation stability of biodiesel/diesel blends with alcohol addition by Rancimat instrument and FTIR spectroscopy†, 31(1), 455–463. https://doi.org/10.1007/s12206-016-1248-5 – reference: WillianTWBariccattiRAMartinsGISeccoDde SouzaSNMRosaHAChavesLIStudy of the methyl crambe (Crambe abyssinica Hochst) and soybean biodiesel oxidative stabilityInd Crops Prod20134320721210.1016/j.indcrop.2012.07.0461:CAS:528:DC%2BC38XhsFSqsbvK – reference: SiddharthJSharmaMPStudy of oxidation stability of Jatropha curcas biodiesel/diesel blendsInt J Egy Env201123533542 – reference: SantamauroFWhiffinFMScottRJChuckCJLow-cost lipid production by an oleaginous yeast cultured in non-sterile conditions using model waste resourcesBiotech for Biofuels201473410.1186/1754-6834-7-341:CAS:528:DC%2BC2MXjsVejuro%3D – reference: KhotMKamatSZinjardeSPantAChopadeBRavi KumarASingle cell oil of oleaginous fungi from the tropical mangrove wetlands as a potential feedstock for biodieselMicrobe Cell Fact2012117110.1186/1475-2859-11-711:CAS:528:DC%2BC38XhvVSrsbzI – reference: Metrohm AG (2008). Quality control of biofuels – reference: BSI, BSEN14214 (2008) Automotive fuels—fatty acid methyl esters (FAME) for diesel engines—requirements and test methods. 2008. – reference: BucyHBBaumgardnerMEMarcheseAJChemical and physical properties of algal methyl ester biodiesel containing varying levels of methyl eicosapentaenoate and methyl docosahexaenoateAlgal Res201211576910.1016/j.algal.2012.02.0011:CAS:528:DC%2BC38Xht1SqsbnL – reference: BrennanLOwendePBiofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-productsRenew Sust Energ Rev20101455757710.1016/j.rser.2009.10.0091:CAS:528:DC%2BD1MXhsF2isbvK – reference: Hardon H, K Zürcher Dtsch. Lebensm.-Rudsch (1974) 70:57 – reference: NatarajanEStability studies of biodieselIJES201224152155 – reference: ThliverosPUçkun KiranEWebbCMicrobial biodiesel production by direct methanolysis of oleaginous biomassBioresour Technol201415718118710.1016/j.biortech.2014.01.1111:CAS:528:DC%2BC2cXmslais7s%3D – reference: MandalSPatnaikRSinghAKMallickComparative assessment of various lipid extraction protocols and optimization of transesterification process for micro algal biodiesel productionEnv Tech20133413–162009201810.1080/09593330.2013.8277301:CAS:528:DC%2BC3sXhsF2ks7rJ – reference: Engines (2013) Requirements and test methods data on cold flow properties pour points. fuel – reference: GraboskiMSMcCormickRLCombustion of fat and vegetable oil derived fuels in diesel enginesProg Egy Combust Sci19982412516410.1016/S0360-1285(97)00034-81:CAS:528:DyaK1cXjtFeju7w%3D – reference: Robert O. Dunn (2008) Antioxidants for improving storage stability of biodiesel. Biofuels, Bioproducts and Biorefining 2 (4):304–318 – reference: Ali T, Dina H (2014) El-Ghonemy. Optimization of culture conditions for the highest lipid production from some oleaginous fungi for biodiesel preparation. Asian J Appl Sci 02(05) – reference: Ranjith Kumar R, Hanumantha Rao P, Arumugam M (2015) Lipid Extraction Methods from Microalgae: A Comprehensive Review. Front Energy Res [Internet] 2(January):1–9. Available from: http://journal.frontiersin.org/article/10.3389/fenrg.2014.00061/abstract – reference: KolouchováMaťátkováOSiglerKMasákJŘezankaTProduction of palmitoleic and linoleic acid in oleaginous and nonoleaginous yeast biomassInt J Anal Chem201620161810.1155/2016/75836841:CAS:528:DC%2BC1cXnvFyjtrg%3D – reference: International Energy Organization 2013 and 2016 (2015) – reference: Sakthivel R, Ramesh K, Shameer PM, Purnachandran R (2018) Experimental investigation on improvement of storage stability of bio-oil derived from intermediate pyrolysis of Calophyllum inophyllum seed cake, (5). J Energy Inst xxx 2018. https://doi.org/10.1016/j.joei.2018.02.006 – reference: MarinkovicDMStankovicMVVelickovicAVAvramovicJMMiladinovicMRStamenkovicOOVeljkovicVBJovanovicDMCalcium oxide as a promising heterogeneous catalyst for biodiesel production: current state and perspectivesRenew Sus Egy Rev2016561387140810.1016/j.rser.2015.12.0071:CAS:528:DC%2BC28XhtFGhsQ%3D%3D – reference: AmiDPosteriRMereghettiPPorroDDogliaSMBranduardiPFourier transform infrared spectroscopy as a method to study lipid accumulation in oleaginous yeastsBiotech for Biofuels201471210.1186/1754-6834-7-121:CAS:528:DC%2BC2MXjsFaqtrs%3D – reference: PatelDSindhuKAroraNSinghRPPruthiVPruthiPABiodiesel production from non-edible lignocellulosic biomass of Cassia fistula L. fruit pulp using oleaginous yeast Rhodosporidium kratochvilovae HIMPA1Bioresour Technol2015197919810.1016/j.biortech.2015.08.0391:CAS:528:DC%2BC2MXhsVSjsLrF – reference: KlensporfDJeleñHHAnalysis of volatile aldehydes in oat flakes by SPME-GC/MSPol J Food Nutr Sci200514/554389395 – reference: SahaNKBalakrishnanMBatraVSImproving industrial water use: case study for an Indian distilleryRes. Conserv. Recycl.20054316317410.1016/j.resconrec.2004.04.016 – reference: AthenakiMGardeliCDiamantopoulouPTchakouteuSSSarrisDPhilippoussisALipids from yeasts and fungi: physiology, production and analytical considerations201710.1111/jam.13633 – volume: 14 start-page: 557 year: 2010 ident: 3619_CR8 publication-title: Renew Sust Energ Rev doi: 10.1016/j.rser.2009.10.009 – ident: 3619_CR69 – start-page: 63 volume-title: Significance of tests for petroleum products, 7th edn year: 2003 ident: 3619_CR66 – volume: 24 start-page: 125 year: 1998 ident: 3619_CR24 publication-title: Prog Egy Combust Sci doi: 10.1016/S0360-1285(97)00034-8 – volume: 7 start-page: 12 year: 2014 ident: 3619_CR2 publication-title: Biotech for Biofuels doi: 10.1186/1754-6834-7-12 – ident: 3619_CR14 – volume: 10 start-page: 310 issue: 67 year: 2015 ident: 3619_CR3 publication-title: Inter J of Appl Engg Res – volume: 54 start-page: 621 year: 2008 ident: 3619_CR31 publication-title: Plant J doi: 10.1111/j.1365-313X.2008.03492.x – volume: 2 start-page: 533 issue: 3 year: 2011 ident: 3619_CR60 publication-title: Int J Egy Env – volume: 14 start-page: 257 issue: 3 year: 1980 ident: 3619_CR59 publication-title: Water Res doi: 10.1016/0043-1354(80)90097-4 – volume: 90 start-page: 420 issue: 1 year: 1978 ident: 3619_CR25 publication-title: Anal Biochem doi: 10.1016/0003-2697(78)90046-5 – ident: 3619_CR26 – ident: 3619_CR32 – volume: 267 start-page: 223 year: 2018 ident: 3619_CR41 publication-title: Food Chem doi: 10.1016/j.foodchem.2017.11.042 – volume: 983 start-page: 19 year: 2003 ident: 3619_CR61 publication-title: J Chromatography A doi: 10.1016/S0021-9673(02)01691-6 – volume: 2016 start-page: 1 year: 2016 ident: 3619_CR37 publication-title: Int J Anal Chem doi: 10.1155/2016/7583684 – volume: 138 start-page: 6016 year: 2013 ident: 3619_CR65 publication-title: Analyst doi: 10.1039/c3an00485f – volume: 23 start-page: 2159 issue: 12 year: 2012 ident: 3619_CR70 publication-title: J Braz Chem Soc doi: 10.1590/S0103-50532012001200004 – volume: 83 start-page: 947 issue: 11 year: 2006 ident: 3619_CR40 publication-title: J Am Oil Chemists’ Soc doi: 10.1007/s11746-006-5051-9 – volume: 101 start-page: 4499 year: 2010 ident: 3619_CR11 publication-title: Bioresour Technol doi: 10.1016/j.biortech.2010.01.065 – volume: 49 start-page: 1633 issue: 5 year: 2006 ident: 3619_CR13 publication-title: Am Soc Agric Biol Eng – volume: 96 start-page: 237 year: 2012 ident: 3619_CR29 publication-title: Fuel Process Technol doi: 10.1016/j.fuproc.2011.12.036 – volume: 14/55 start-page: 389 issue: 4 year: 2005 ident: 3619_CR34 publication-title: Pol J Food Nutr Sci – ident: 3619_CR64 – volume: 111 start-page: 398 year: 2012 ident: 3619_CR19 publication-title: Bioresour Technol doi: 10.1016/j.biortech.2012.02.004 – volume: 186 start-page: 731 issue: 3 year: 2018 ident: 3619_CR58 publication-title: Appl Biochem Biotech doi: 10.1007/s12010-018-2777-4 – volume: 11 start-page: 71 year: 2012 ident: 3619_CR33 publication-title: Microbe Cell Fact doi: 10.1186/1475-2859-11-71 – volume: 88 start-page: 651 issue: 7 year: 2007 ident: 3619_CR44 publication-title: Fuel Proces Tech doi: 10.1016/j.fuproc.2007.01.006 – volume: 72 start-page: 699 year: 2001 ident: 3619_CR7 publication-title: Ibid – ident: 3619_CR22 – volume: 69 start-page: 525 year: 1992 ident: 3619_CR27 publication-title: J Am Oil Chem Soc doi: 10.1007/BF02636102 – volume: 87 start-page: 756 year: 2010 ident: 3619_CR20 publication-title: Appl Egy doi: 10.1016/j.apenergy.2009.09.006 – ident: 3619_CR47 doi: 10.1002/ejlt.201100014 – ident: 3619_CR9 – volume: 83 start-page: 79 issue: 1 year: 1997 ident: 3619_CR28 publication-title: J Ferment Bioeng doi: 10.1016/S0922-338X(97)87331-X – volume: 52 start-page: 351 year: 2007 ident: 3619_CR62 publication-title: Res Conserv Recycl doi: 10.1016/j.resconrec.2007.05.003 – ident: 3619_CR35 – volume: 86 start-page: 885 issue: 8 year: 2005 ident: 3619_CR12 publication-title: Fuel Process Technol doi: 10.1016/j.fuproc.2004.10.001 – ident: 3619_CR53 doi: 10.3389/fenrg.2014.00061 – volume: 37 start-page: 922 year: 1959 ident: 3619_CR6 publication-title: Can J Biochem Physiol doi: 10.1139/y59-099 – volume: 1 start-page: 57 issue: 1 year: 2012 ident: 3619_CR10 publication-title: Algal Res doi: 10.1016/j.algal.2012.02.001 – volume: 7 start-page: 1371 issue: 5 year: 2018 ident: 3619_CR21 publication-title: Synth Biol doi: 10.1021/acssynbio.7b00453 – volume: 100 start-page: 261 issue: 1 year: 2009 ident: 3619_CR52 publication-title: Bioresour Technol doi: 10.1016/j.biortech.2008.06.039 – ident: 3619_CR1 – volume: 2 start-page: 152 issue: 4 year: 2012 ident: 3619_CR46 publication-title: IJES – volume: 7 start-page: 34 year: 2014 ident: 3619_CR57 publication-title: Biotech for Biofuels doi: 10.1186/1754-6834-7-34 – ident: 3619_CR67 – volume: 4 start-page: 250 issue: 3 year: 2008 ident: 3619_CR30 publication-title: Am J Biochem Biotech doi: 10.3844/ajbbsp.2008.250.254 – volume: 157 start-page: 181 year: 2014 ident: 3619_CR63 publication-title: Bioresour Technol doi: 10.1016/j.biortech.2014.01.111 – volume: 106 start-page: 837 issue: 12 year: 2004 ident: 3619_CR16 publication-title: Eur J Lipid Sci Technol doi: 10.1002/ejlt.200400978 – volume: 16 start-page: 5924 issue: 8 year: 2012 ident: 3619_CR50 publication-title: Renew Sust Energ Rev doi: 10.1016/j.rser.2012.06.024 – volume: 173 start-page: 132 year: 2014 ident: 3619_CR39 publication-title: Bioresour Technol doi: 10.1016/j.biortech.2014.09.047 – volume: 43 start-page: 207 year: 2013 ident: 3619_CR68 publication-title: Ind Crops Prod doi: 10.1016/j.indcrop.2012.07.046 – ident: 3619_CR5 doi: 10.1016/j.copbio.2015.09.005 – volume: 34 start-page: 2009 issue: 13–16 year: 2013 ident: 3619_CR42 publication-title: Env Tech doi: 10.1080/09593330.2013.827730 – ident: 3619_CR49 doi: 10.1007/s12206-016-1248-5 – ident: 3619_CR56 doi: 10.1016/j.joei.2018.02.006 – volume: 24 start-page: 1703 year: 2008 ident: 3619_CR23 publication-title: World J Microbiol Biotech doi: 10.1007/s11274-008-9664-z – volume: 33 start-page: 573 year: 2009 ident: 3619_CR15 publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2008.09.006 – volume: 197 start-page: 91 year: 2015 ident: 3619_CR48 publication-title: Bioresour Technol doi: 10.1016/j.biortech.2015.08.039 – start-page: 172 volume-title: ACS Symposium Series No. 666: Fuels and Chemicals from Biomass year: 1997 ident: 3619_CR36 doi: 10.1021/bk-1997-0666.ch010 – ident: 3619_CR38 doi: 10.1016/j.fuel.2013.08.045 – volume: 56 start-page: 1387 year: 2016 ident: 3619_CR43 publication-title: Renew Sus Egy Rev doi: 10.1016/j.rser.2015.12.007 – ident: 3619_CR17 – ident: 3619_CR54 doi: 10.1002/bbb.83 – ident: 3619_CR45 – volume: 43 start-page: 163 year: 2005 ident: 3619_CR55 publication-title: Res. Conserv. Recycl. doi: 10.1016/j.resconrec.2004.04.016 – ident: 3619_CR18 doi: 10.3389/fenrg.2014.00057 – ident: 3619_CR51 doi: 10.1007/s11356-018-1241-x – volume-title: Lipids from yeasts and fungi: physiology, production and analytical considerations year: 2017 ident: 3619_CR4 doi: 10.1111/jam.13633 |
SSID | ssj0020927 |
Score | 2.2667851 |
Snippet | Biodiesel and single cell oils obtained from oleaginous yeasts grown in industrial waste are attractive alternatives to the conventional fuels. However, there... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3075 |
SubjectTerms | Alternative fuels Aquatic Pollution Atmospheric Protection/Air Quality Control/Air Pollution Biodegradation biodiesel Biodiesel fuels Biofuels Chromatography Degradation Degradation products Diesel Earth and Environmental Science Ecotoxicology Environment Environmental Chemistry Environmental Health Environmental science Gas chromatography gas chromatography-mass spectrometry Industrial wastes Infrared analysis Infrared spectroscopy Mass spectrometry Mass spectroscopy microbial oils Microorganisms Oxidation oxidative stability Research Article Shelf life spectral analysis Stability analysis Storage conditions storage quality Storage stability storage time Waste Water Technology Water Management Water Pollution Control Yeast yeasts |
SummonAdditionalLinks | – databaseName: Health & Medical Collection (ProQuest) dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1daxQxFA21ffFF-mF1apUUfFKCm0nmI30RkZYitIJY2LchydzUQruz3d2C--ZfEP-hv8R7ZzI7lOI-z50Qcm-Sc5Kbcxl7GxSJzBW1UCqA0CZIUUpZiywP0iPFCCkQUTy_yM8u9ZdxNo4HbvOYVtmvie1CXTeezsg_pCQsp02py4_TO0FVo-h2NZbQeMK2SLqMUrqK8UC4RqYr2Wq0FlJp3d9qtk_npMqIS5dCIYcQ8uG-9AhsProobfef0232LAJH_qnz9A7bgMku2z8Z3qnhxzhR53vs99ef1121JI7wr02AXfIm8CWV6uHuuqHkQbjhlPZ-xb-R6AZCV26jRMkxxwDsG-hsMBJnlKzO27eZpIHZTJf4Q82v7Jz7H7MGG4j6139__blFUN6b3sJitnzOLk9Pvn8-E7H6gvBa64UI1qfW2GCodHrAca-dAU8EpASjg9ESCutzk3uQIGtpoEyDMy6MQDuZW7XPNifNBF4yDs5lgEwYuYzXNpW2zAuXIvlWRe0V1Akb9WNf-ShNThUybqpBVJncVaG7KnJXJRP2bvXLtNPlWGd82Du0ilN0Xg0BlbCj1WecXHRjYifQ3Lc2hhixztbZlIZAoSkS9qILllWPcDFFyKdHCXvfR8_Qgf9292B9d1-xp4jaTHcOdMg2F7N7eI3IaOHetOH_D8CsDjg priority: 102 providerName: ProQuest |
Title | Oxidation stability of yeast biodiesel using Rancimat analysis: validation using infrared spectroscopy and gas chromatography–mass spectrometry |
URI | https://link.springer.com/article/10.1007/s11356-018-3619-1 https://www.ncbi.nlm.nih.gov/pubmed/30506440 https://www.proquest.com/docview/2140349848 https://www.proquest.com/docview/2149022245 https://www.proquest.com/docview/2189515997 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB1Be-GC-CqElpWROIEsrWMnsbkt1ZYKREEVKy2nyHbstlK7qXa3UvfGX0D8Q34JM_nYFSpU4pIcMraczDh5Lx6_AXgVJYnMFRWXMgauTBRcC1HxLI_CI8WIaSCi-OkoP5yoD9Ns2u3jXvTZ7v2SZPOm3mx2EzIj9qu5RNTPkfJsZ0TdMYgn6WjNsoamrdNqlOJCKtUvZf6tiz8_RjcQ5o3V0eajc_AA7ndokY1a9z6EO2H2CHbGm81peLGbnYvH8OPz9VlbIokh5muyXlesjmxF9XmYO6spYzCcM8p1P2HHpLSBeJXZTpfkLcOo6ztobTD85pShzpoNmSR8WV-usEHFTuyC-dN5jR10ote_vv-8QCTem16E5Xz1BCYH46_7h7wrucC9UmrJo_WpNTYaqpcetdKVM8ET69DBqGiUCIX1ucl9EEFUwgSdRmdcHAblRG7lDmzN6ll4Biw4lwWkv0hgvLKpsDovXIqMWxaVl6FKYNg_-9J3euRUFuO83Cgpk7tKdFdJ7ipFAq_XTS5bMY7bjPd6h5bdvFyUKckTKoM3lsDL9WWcUbRMYmehvmpsDNFgld1mow0hQVMk8LQNlvWI8A2KOE8NE3jTR89mAP8c7vP_st6Fe4jcTPsvaA-2lvOr8ALR0dIN4G4xLfCo98UAtkfvv30c4_nd-OjL8aCZKb8BascPnQ |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6V7QEuqPwUQgsYCS4gi3XsZGMkhPjZakvbBVWt1FvqOHap1G6W3a0gN14B8R48FE_CTH52hSr21nMmlpUZj78vHn8D8NRLEpnr5VxK77jSXvBEiJxHsRcWKYYPHRHFvWE8OFQfj6KjFfjd3oWhsso2J1aJOi8s_SN_GZKwnNKJSt6Mv3LqGkWnq20LjTosdlz5DSnb9PX2B_TvszDc6h-8H_CmqwC3SqkZ98aGRhuvqSW4x_HyTDtLwDpxWnmthOsZG-vYOuFELrRLQp_pzHedykRsJI57DVaVRCrTgdV3_eHn_TnF6-q6SaxWigupVHuOWl3WEzIi9p5wiayFi393wkvw9tLRbLXjba3BzQaqsrd1bN2CFTe6Dev9xc04fNikhukd-Pnp-2ndn4kh4KxKbktWeFZScyCWnRZUrujOGBXan7B9kvlAsMxMI4ryimHItwPUNhj7EyqPZ9VtUFLdLMYlvpCzEzNl9sukwAEaxe0_P36dIw1oTc_dbFLehcMr8cw6dEbFyN0H5rIscsi9kT1ZZUJhkriXhUj3ZS-30uUBdNtvn9pGDJ16cpylCxlncleK7krJXakI4Pn8lXGtBLLMeLN1aNokhWm6COEAnswf43KmMxozcsVFZaOJg6tomU2iCYbqXgD36mCZzwjTN4JM1Q3gRRs9iwn8d7oPlk_3MVwfHOztprvbw50NuIGYUdd_oTahM5tcuIeIy2bZo2YxMDi-6vX3FwAfTgU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1baxQxFD7UCuKLeKuOrRpBX5TQzSRziSAitktrtYpY2LdpJpPUQruz3d2i8-ZfEP-NP8df4jlz2UGK-9bnOQlhziXfl5ycA_DUSyoylxRcSu-40l7wVIiCR7EXFimGDx0RxQ_78c6BejeKRivwu3sLQ2mVXUysA3VRWjoj3wypsJzSqUo3fZsW8Wlr-HpyxqmDFN20du00GhPZc9U3pG-zV7tbqOtnYTjc_vJ2h7cdBrhVSs25NzY02nhN7cE9zl3k2lkC2anTymslXGJsrGPrhBOF0C4Nfa5zP3AqF7GROO8VuJrISJCPJaOe7A100y5WK8WFVKq7Ua2f7QkZEY9PuUT-wsW_e-IFoHvhkrbe-4Y34UYLWtmbxspuwYob34a17f6NHH5sg8TsDvz8-P246dTEEHrWybcVKz2rqE0Qy49LSlx0J4xS7o_YZyr4gbCZmbY8ykuGxt9N0MigF0wpUZ7V70Kp_mY5qXBAwY7MjNmv0xInaGtv__nx6xQJQSd66ubT6i4cXIpe1mB1XI7dfWAuzyOHLBx5lFUmFCaNkzxE4i-TwkpXBDDo_n1m27Lo1J3jJOsLOpO6MlRXRurKRADPF0MmTU2QZcIbnUKzNjzMst6YA3iy-IyOTbc1ZuzK81pGExtX0TKZVBMg1UkA9xpjWawIAznCTTUI4EVnPf0C_rvcB8uX-xiuoddl73f399bhOoJH3RxHbcDqfHruHiJAm-ePak9gcHjZrvcXruNQ1Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Oxidation+stability+of+yeast+biodiesel+using+Rancimat+analysis%3A+validation+using+infrared+spectroscopy+and+gas+chromatography-mass+spectrometry&rft.jtitle=Environmental+science+and+pollution+research+international&rft.au=Tamilalagan%2C+Anbarasan&rft.au=Singaram%2C+Jayanthi&rft.date=2019-01-01&rft.eissn=1614-7499&rft.volume=26&rft.issue=3&rft.spage=3075&rft_id=info:doi/10.1007%2Fs11356-018-3619-1&rft_id=info%3Apmid%2F30506440&rft.externalDocID=30506440 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0944-1344&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0944-1344&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0944-1344&client=summon |