Subject Recognition Based on Ground Reaction Force Measurements of Gait Signals

An effective subject recognition approach is designed in this paper, using ground reaction force (GRF) measurements of human gait. The method is a three-stage procedure: 1) The original GRF data are translated through wavelet packet (WP) transform in the time-frequency domain. Using a fuzzy-set-base...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on systems, man and cybernetics. Part B, Cybernetics Vol. 38; no. 6; pp. 1476 - 1485
Main Authors Moustakidis, S.P., Theocharis, J.B., Giakas, G.
Format Journal Article
LanguageEnglish
Published United States IEEE 01.12.2008
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:An effective subject recognition approach is designed in this paper, using ground reaction force (GRF) measurements of human gait. The method is a three-stage procedure: 1) The original GRF data are translated through wavelet packet (WP) transform in the time-frequency domain. Using a fuzzy-set-based criterion, we determine an optimal WP decomposition, involving feature subspaces with distinguishing gait characteristics. 2) A feature extraction scheme is employed next for wavelet feature ranking, according to discrimination power. 3) The classification task is accomplished by means of a kernel-based support vector machine. The design parameters of the classifier are tuned through a genetic algorithm to improve recognition rates. The method is evaluated on a database comprising GRF records obtained from 40 subjects. To account for the natural variability of human gait, the experimental setup is designed, allowing different walking speeds and loading conditions. Simulation results demonstrate that high recognition rates can be achieved with moderate number of features and for different training/testing settings. Finally, the performance of our approach is favorably compared with the one obtained using other traditional classification algorithms.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:1083-4419
1941-0492
1941-0492
DOI:10.1109/TSMCB.2008.927722