Hippocampal FGF-2 and FGFR1 mRNA expression in major depression, schizophrenia and bipolar disorder

FGF-2 is important for stem cell proliferation, neocortical development and adult neuronal survival and growth. Reduced frontal cortical FGF-2 expression is described in major depression and is attenuated by antidepressants. We determined the distribution of hippocampal FGF-2 and its receptor (FGFR1...

Full description

Saved in:
Bibliographic Details
Published inBrain research bulletin Vol. 70; no. 3; pp. 221 - 227
Main Authors Gaughran, Fiona, Payne, Joachim, Sedgwick, Philip M., Cotter, David, Berry, Martin
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 31.07.2006
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:FGF-2 is important for stem cell proliferation, neocortical development and adult neuronal survival and growth. Reduced frontal cortical FGF-2 expression is described in major depression and is attenuated by antidepressants. We determined the distribution of hippocampal FGF-2 and its receptor (FGFR1) mRNA in post-mortem brains of people who suffered from major depression, bipolar disorder and schizophrenia and those of controls. FGF-2 and FGFR1 mRNA were measured within hippocampal CA1, CA4 regions and the dentate gyrus (DG), using in situ hybridization. Within hippocampal regions, cellular staining was compared between diagnostic groups, using repeated measures analysis of variance. The density of FGF-2 mRNA+ cells in CA4 was reduced in depression compared to controls. The percentage of FGFR1 mRNA+ cells was higher in depression (CA1 and CA4) and schizophrenia (CA4) than in controls. FGFR1 mRNA expression was higher in depression than in the other groups in CA1, CA4 and DG. Overall FGF-2 mRNA expression was higher in DG than in CA1 and CA4. We found raised measures of FGFR1 mRNA+ in major depression and, less so, in schizophrenia, along with reduced FGF-2 mRNA density in depression. Perturbations of FGF regulation could be relevant to the pathogenesis of both disorders as FGF-2 and FGFR1 are implicated in normal hippocampal synaptology, stem cell recruitment, and connectivity, and are modulated by corticosteroids.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0361-9230
1873-2747
DOI:10.1016/j.brainresbull.2006.04.008