Preparation of ZnO hybrid nanoparticles by ATRP
Zinc oxide (ZnO) is a wide bandgap semiconductor material that has attracted widespread interest as particle filler in polymer nanocomposite materials. However, its applications have been hindered by the limited dispersibility and surface-modification techniques. Herein, three distinct approaches fo...
Saved in:
Published in | Polymer (Guilford) Vol. 107; no. C; pp. 492 - 502 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
19.12.2016
Elsevier BV Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Zinc oxide (ZnO) is a wide bandgap semiconductor material that has attracted widespread interest as particle filler in polymer nanocomposite materials. However, its applications have been hindered by the limited dispersibility and surface-modification techniques. Herein, three distinct approaches for the synthesis of polymer-tethered ZnO hybrid materials are compared in terms of uniformity and yield of the particle-brush product: “grafting-from”, “grafting-onto”, and “grafted-copolymer template” methods. In the “grafting-from” method, pristine ZnO nanoparticles (NP) were first functionalized with atom transfer radical polymerization (ATRP) initiators followed by grafting-from process to form poly(methyl methacrylate) (PMMA) or poly(styrene-co-acrylonitrile) (PSAN) tethered polymer chains. In the “grafting-onto” method, PMMA-b-PAA (poly[acrylic acid]) and PSAN-b-PAA diblock copolymers were prepared and attached onto the surface of ZnO NPs using sonication bath. For the “grafted-copolymer template” method, PSAN-b-PtBA-Br (poly[tert-butyl acrylate]-Br) macroinitiators were crosslinked with divinylbenzene (DVB) to form PSAN-b-PtBA-PDVB core-shell star polymers. After hydrolysis to form PSAN-b-PAA-PDVB star polymers, the functional stars were used as polymer templates for the synthesis of ZnO NPs within the PAA-core of the stars. Core-shell molecular bottlebrushes with PAA-b-PS block-copolymer side chains were also used as anisotropic analogues of star template to prepared worm-like ZnO particles. Several ZnO precursors, zinc nitrite, zinc 2-ethylhexanoate, and zinc acetate were evaluated as precursors of ZnO. Conditions were identified that enable the synthesis of polymer-tethered ZnO with excellent size uniformity and dispersion characteristics using the star-template method.
[Display omitted]
•ZnO hybrids were prepared via “grafting-from”, “grafting-onto”, & “templating”.•ZnO hybrids with relatively high size uniformity and dispersibility were obtained.•ZnO hybrid nanoparticles were prepared using molecular bottlebrush templates. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 USDOE EE 0006702; 2014/14/A/ST5/00204 |
ISSN: | 0032-3861 1873-2291 |
DOI: | 10.1016/j.polymer.2016.09.022 |