Modeling and Stiffness-Based Continuous Torque Control of Lightweight Quasi-Direct-Drive Knee Exoskeletons for Versatile Walking Assistance
State-of-the-art exoskeletons are typically limited by the low control bandwidth and small-range stiffness of actuators, which are based on high gear ratios and elastic components (e.g., series elastic actuators). Furthermore, most exoskeletons are based on discrete gait phase detection and/or discr...
Saved in:
Published in | IEEE transactions on robotics Vol. 38; no. 3; pp. 1 - 18 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.06.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | State-of-the-art exoskeletons are typically limited by the low control bandwidth and small-range stiffness of actuators, which are based on high gear ratios and elastic components (e.g., series elastic actuators). Furthermore, most exoskeletons are based on discrete gait phase detection and/or discrete stiffness control, resulting in discontinuous torque profiles. To fill these two gaps, we developed a portable, lightweight knee exoskeleton using quasi-direct-drive (QDD) actuation that provides 14 N·m torque (36.8% biological joint moment for overground walking). This article presents 1) stiffness modeling of torque-controlled QDD exoskeletons and 2) stiffness-based continuous torque controller that estimates knee joint moment in real-time. Experimental tests found that the exoskeleton had a high bandwidth of stiffness control (16 Hz under 100 N·m/rad) and high torque tracking accuracy with 0.34 N·m root mean square error (6.22%) across 0-350 N·m/rad large-range stiffness. The continuous controller was able to estimate knee moments accurately and smoothly for three walking speeds and their transitions. Experimental results with eight able-bodied subjects demonstrated that our exoskeleton was able to reduce the muscle activities of all eight measured knee and ankle muscles by 8.60%-15.22% relative to the unpowered condition and two knee flexors and one ankle plantar flexor by 1.92%-10.24% relative to the baseline (no exoskeleton) condition. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 These authors contributed equally to this work. |
ISSN: | 1552-3098 1941-0468 |
DOI: | 10.1109/TRO.2022.3170287 |