Longitudinal Prediction of Infant Diffusion MRI Data via Graph Convolutional Adversarial Networks

Missing data is a common problem in longitudinal studies due to subject dropouts and failed scans. We present a graph-based convolutional neural network to predict missing diffusion MRI data. In particular, we consider the relationships between sampling points in the spatial domain and the diffusion...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on medical imaging Vol. 38; no. 12; pp. 2717 - 2725
Main Authors Hong, Yoonmi, Kim, Jaeil, Chen, Geng, Lin, Weili, Yap, Pew-Thian, Shen, Dinggang
Format Journal Article
LanguageEnglish
Published United States IEEE 01.12.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0278-0062
1558-254X
1558-254X
DOI10.1109/TMI.2019.2911203

Cover

Loading…
More Information
Summary:Missing data is a common problem in longitudinal studies due to subject dropouts and failed scans. We present a graph-based convolutional neural network to predict missing diffusion MRI data. In particular, we consider the relationships between sampling points in the spatial domain and the diffusion wave-vector domain to construct a graph. We then use a graph convolutional network to learn the non-linear mapping from available data to missing data. Our method harnesses a multi-scale residual architecture with adversarial learning for prediction with greater accuracy and perceptual quality. Experimental results show that our method is accurate and robust in the longitudinal prediction of infant brain diffusion MRI data.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0278-0062
1558-254X
1558-254X
DOI:10.1109/TMI.2019.2911203