MRI-Based Deep-Learning Method for Determining Glioma MGMT Promoter Methylation Status

( ) promoter methylation confers an improved prognosis and treatment response in gliomas. We developed a deep learning network for determining promoter methylation status using T2 weighted Images (T2WI) only. Brain MR imaging and corresponding genomic information were obtained for 247 subjects from...

Full description

Saved in:
Bibliographic Details
Published inAmerican journal of neuroradiology : AJNR Vol. 42; no. 5; pp. 845 - 852
Main Authors Yogananda, C.G.B., Shah, B.R., Nalawade, S.S., Murugesan, G.K., Yu, F.F., Pinho, M.C., Wagner, B.C., Mickey, B., Patel, T.R., Fei, B., Madhuranthakam, A.J., Maldjian, J.A.
Format Journal Article
LanguageEnglish
Published United States American Society of Neuroradiology 01.05.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract ( ) promoter methylation confers an improved prognosis and treatment response in gliomas. We developed a deep learning network for determining promoter methylation status using T2 weighted Images (T2WI) only. Brain MR imaging and corresponding genomic information were obtained for 247 subjects from The Cancer Imaging Archive and The Cancer Genome Atlas. One hundred sixty-three subjects had a methylated promoter. A T2WI-only network ( -net) was developed to determine promoter methylation status and simultaneous single-label tumor segmentation. The network was trained using 3D-dense-UNets. Three-fold cross-validation was performed to generalize the performance of the networks. Dice scores were computed to determine tumor-segmentation accuracy. The -net demonstrated a mean cross-validation accuracy of 94.73% across the 3 folds (95.12%, 93.98%, and 95.12%, [SD, 0.66%]) in predicting methylation status with a sensitivity and specificity of 96.31% [SD, 0.04%] and 91.66% [SD, 2.06%], respectively, and a mean area under the curve of 0.93 [SD, 0.01]. The whole tumor-segmentation mean Dice score was 0.82 [SD, 0.008]. We demonstrate high classification accuracy in predicting promoter methylation status using only T2WI. Our network surpasses the sensitivity, specificity, and accuracy of histologic and molecular methods. This result represents an important milestone toward using MR imaging to predict prognosis and treatment response.
AbstractList Editorial expression of concern: In the May 2021 edition, the American Journal of Neuroradilogy published the article “MRI-Based Deep-Learning Method for Determining Glioma MGMT Promoter Methylation Status” by Yogananda CGB, et al. 1 On August 22, 2022, the authors self-reported data errors related to the computer code and the training and testing data sets. The authors are now in the process of re-evaluating the accuracies using the correct test set. This notice of concern is to inform readers about these possible issues related to this articles results. After additional tests from the authors on the correct dataset are available, we will determine what additional action is warranted, such as an erratum. 1. Yogananda CGB, Shah BR, Nalawade SS, et al. MRI-based deep-learning method for determining glioma MGMT promoter methylation status. American Journal of Neuroradilogy . 2021;42(5):845-852. doi: 10.3174/AJNR.A7029
( ) promoter methylation confers an improved prognosis and treatment response in gliomas. We developed a deep learning network for determining promoter methylation status using T2 weighted Images (T2WI) only. Brain MR imaging and corresponding genomic information were obtained for 247 subjects from The Cancer Imaging Archive and The Cancer Genome Atlas. One hundred sixty-three subjects had a methylated promoter. A T2WI-only network ( -net) was developed to determine promoter methylation status and simultaneous single-label tumor segmentation. The network was trained using 3D-dense-UNets. Three-fold cross-validation was performed to generalize the performance of the networks. Dice scores were computed to determine tumor-segmentation accuracy. The -net demonstrated a mean cross-validation accuracy of 94.73% across the 3 folds (95.12%, 93.98%, and 95.12%, [SD, 0.66%]) in predicting methylation status with a sensitivity and specificity of 96.31% [SD, 0.04%] and 91.66% [SD, 2.06%], respectively, and a mean area under the curve of 0.93 [SD, 0.01]. The whole tumor-segmentation mean Dice score was 0.82 [SD, 0.008]. We demonstrate high classification accuracy in predicting promoter methylation status using only T2WI. Our network surpasses the sensitivity, specificity, and accuracy of histologic and molecular methods. This result represents an important milestone toward using MR imaging to predict prognosis and treatment response.
O6-Methylguanine-DNA methyltransferase (MGMT) promoter methylation confers an improved prognosis and treatment response in gliomas. We developed a deep learning network for determining MGMT promoter methylation status using T2 weighted Images (T2WI) only.BACKGROUND AND PURPOSEO6-Methylguanine-DNA methyltransferase (MGMT) promoter methylation confers an improved prognosis and treatment response in gliomas. We developed a deep learning network for determining MGMT promoter methylation status using T2 weighted Images (T2WI) only.Brain MR imaging and corresponding genomic information were obtained for 247 subjects from The Cancer Imaging Archive and The Cancer Genome Atlas. One hundred sixty-three subjects had a methylated MGMT promoter. A T2WI-only network (MGMT-net) was developed to determine MGMT promoter methylation status and simultaneous single-label tumor segmentation. The network was trained using 3D-dense-UNets. Three-fold cross-validation was performed to generalize the performance of the networks. Dice scores were computed to determine tumor-segmentation accuracy.MATERIALS AND METHODSBrain MR imaging and corresponding genomic information were obtained for 247 subjects from The Cancer Imaging Archive and The Cancer Genome Atlas. One hundred sixty-three subjects had a methylated MGMT promoter. A T2WI-only network (MGMT-net) was developed to determine MGMT promoter methylation status and simultaneous single-label tumor segmentation. The network was trained using 3D-dense-UNets. Three-fold cross-validation was performed to generalize the performance of the networks. Dice scores were computed to determine tumor-segmentation accuracy.The MGMT-net demonstrated a mean cross-validation accuracy of 94.73% across the 3 folds (95.12%, 93.98%, and 95.12%, [SD, 0.66%]) in predicting MGMT methylation status with a sensitivity and specificity of 96.31% [SD, 0.04%] and 91.66% [SD, 2.06%], respectively, and a mean area under the curve of 0.93 [SD, 0.01]. The whole tumor-segmentation mean Dice score was 0.82 [SD, 0.008].RESULTSThe MGMT-net demonstrated a mean cross-validation accuracy of 94.73% across the 3 folds (95.12%, 93.98%, and 95.12%, [SD, 0.66%]) in predicting MGMT methylation status with a sensitivity and specificity of 96.31% [SD, 0.04%] and 91.66% [SD, 2.06%], respectively, and a mean area under the curve of 0.93 [SD, 0.01]. The whole tumor-segmentation mean Dice score was 0.82 [SD, 0.008].We demonstrate high classification accuracy in predicting MGMT promoter methylation status using only T2WI. Our network surpasses the sensitivity, specificity, and accuracy of histologic and molecular methods. This result represents an important milestone toward using MR imaging to predict prognosis and treatment response.CONCLUSIONSWe demonstrate high classification accuracy in predicting MGMT promoter methylation status using only T2WI. Our network surpasses the sensitivity, specificity, and accuracy of histologic and molecular methods. This result represents an important milestone toward using MR imaging to predict prognosis and treatment response.
Author Nalawade, S.S.
Patel, T.R.
Fei, B.
Pinho, M.C.
Shah, B.R.
Wagner, B.C.
Mickey, B.
Madhuranthakam, A.J.
Yu, F.F.
Maldjian, J.A.
Murugesan, G.K.
Yogananda, C.G.B.
Author_xml – sequence: 1
  givenname: C.G.B.
  orcidid: 0000-0001-8853-3036
  surname: Yogananda
  fullname: Yogananda, C.G.B.
– sequence: 2
  givenname: B.R.
  orcidid: 0000-0002-0058-6174
  surname: Shah
  fullname: Shah, B.R.
– sequence: 3
  givenname: S.S.
  orcidid: 0000-0002-5440-8357
  surname: Nalawade
  fullname: Nalawade, S.S.
– sequence: 4
  givenname: G.K.
  orcidid: 0000-0002-2160-6648
  surname: Murugesan
  fullname: Murugesan, G.K.
– sequence: 5
  givenname: F.F.
  orcidid: 0000-0001-9913-1331
  surname: Yu
  fullname: Yu, F.F.
– sequence: 6
  givenname: M.C.
  orcidid: 0000-0002-4645-1638
  surname: Pinho
  fullname: Pinho, M.C.
– sequence: 7
  givenname: B.C.
  orcidid: 0000-0003-2835-986X
  surname: Wagner
  fullname: Wagner, B.C.
– sequence: 8
  givenname: B.
  orcidid: 0000-0001-8695-9447
  surname: Mickey
  fullname: Mickey, B.
– sequence: 9
  givenname: T.R.
  orcidid: 0000-0002-8388-8206
  surname: Patel
  fullname: Patel, T.R.
– sequence: 10
  givenname: B.
  orcidid: 0000-0002-9123-9484
  surname: Fei
  fullname: Fei, B.
– sequence: 11
  givenname: A.J.
  orcidid: 0000-0002-5524-7962
  surname: Madhuranthakam
  fullname: Madhuranthakam, A.J.
– sequence: 12
  givenname: J.A.
  orcidid: 0000-0002-6384-1072
  surname: Maldjian
  fullname: Maldjian, J.A.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33664111$$D View this record in MEDLINE/PubMed
BookMark eNptkV9LHDEUxUNR6mr74geQeSzCaO4kM5O8FOyqq7BLS7uUvoXMzI1GZpJtkhX89s6uf6jSpwv3_O45cM8-2XHeISGHQE8Y1PxU37lwclbTQn4gE5CsymUp_-yQCQVZ5hVQsUf2Y7yjlJayLj6SPcaqigPAhPxe_LzOv-mIXXaOuMrnqIOz7iZbYLr1XWZ8GIWEYbDb9ay3ftDZYrZYZj-CH_wobdmHXifrXfYr6bSOn8iu0X3Ez8_zgCwvL5bTq3z-fXY9PZvnLec85Q3WohVUi1JT4J2msuzq0hSNhoK3ogbaUNigptOFbAQ3wCSioaYVghl2QL4-2a7WzYBdiy4F3atVsIMOD8prq94qzt6qG3-vBEDJKjYafHk2CP7vGmNSg40t9r126NdRFVwKLoFKMaJH_2a9hrz8cgToE9AGH2NAo1qbtk8Zo22vgKpNXWpTl9rWNZ4cvzt5cf0P_AjCP5dh
CitedBy_id crossref_primary_10_1007_s10278_022_00757_x
crossref_primary_10_1177_10732748231169149
crossref_primary_10_1016_j_acra_2024_07_036
crossref_primary_10_31083_j_fbl2809197
crossref_primary_10_3390_cancers16213635
crossref_primary_10_3390_diagnostics12081938
crossref_primary_10_3389_fneur_2024_1345687
crossref_primary_10_1016_j_bspc_2023_105122
crossref_primary_10_1016_j_knosys_2023_110937
crossref_primary_10_1002_btm2_10553
crossref_primary_10_1016_j_critrevonc_2025_104682
crossref_primary_10_1007_s00521_024_09757_0
crossref_primary_10_3389_fonc_2022_796583
crossref_primary_10_3390_diagnostics15070797
crossref_primary_10_3390_jcm11154625
crossref_primary_10_1093_neuonc_noab249
crossref_primary_10_1186_s12916_024_03575_w
crossref_primary_10_1016_j_clineuro_2024_108409
crossref_primary_10_1109_ACCESS_2021_3136293
crossref_primary_10_3390_biomedicines10102490
crossref_primary_10_1117_1_JMI_9_1_016001
crossref_primary_10_1016_j_media_2023_102989
crossref_primary_10_1016_j_semcancer_2023_03_006
crossref_primary_10_1016_j_currproblcancer_2024_101156
crossref_primary_10_3389_fonc_2022_924245
crossref_primary_10_1016_j_eij_2024_100583
crossref_primary_10_3174_ajnr_A7029_ERR
crossref_primary_10_1212_CON_0000000000001202
crossref_primary_10_3390_info13030124
crossref_primary_10_1002_cncr_34540
crossref_primary_10_1007_s00234_024_03329_8
crossref_primary_10_3389_fonc_2022_892056
crossref_primary_10_3390_cancers13246186
crossref_primary_10_3389_fonc_2022_963612
crossref_primary_10_1038_s41598_025_87803_0
crossref_primary_10_3390_cancers14194827
crossref_primary_10_1016_j_humgen_2022_201140
crossref_primary_10_3174_ajnr_A8148
crossref_primary_10_1093_noajnl_vdae225
crossref_primary_10_1016_j_isci_2022_105872
crossref_primary_10_3390_jimaging8120321
crossref_primary_10_1007_s00330_023_09944_y
crossref_primary_10_1016_j_compbiomed_2022_106492
crossref_primary_10_3390_cancers16030576
crossref_primary_10_3390_biomedicines12092156
crossref_primary_10_1038_s41698_024_00789_2
crossref_primary_10_1016_j_ejrad_2022_110560
crossref_primary_10_1093_pcmedi_pbab026
crossref_primary_10_3390_diagnostics15030251
crossref_primary_10_1038_s41598_024_66653_2
crossref_primary_10_3389_fradi_2022_1061402
crossref_primary_10_1007_s00234_023_03196_9
crossref_primary_10_1007_s00521_023_08405_3
crossref_primary_10_1186_s40644_024_00817_1
crossref_primary_10_3390_molecules28155660
crossref_primary_10_3390_jcm11195961
crossref_primary_10_3390_cancers15082253
Cites_doi 10.1007/s00401-012-1016-2
10.1016/S1470-2045(09)70025-7
10.3389/fncom.2019.00056
10.1038/nature07385
10.1038/s41598-019-50849-y
10.1109/CVPRW.2017.156
10.1093/noajnl/vdaa066
10.1007/s00234-011-0947-y
10.1093/neuonc/noz199
10.1016/j.neuroimage.2014.05.044
10.1007/s13311-017-0519-x
10.1002/hbm.10062
10.1016/j.neuroimage.2011.09.015
10.1056/NEJMoa043331
10.1016/j.neuroimage.2008.10.055
10.3174/ajnr.A5667
10.1007/s10278-013-9622-7
10.1038/s41598-019-47642-2
10.3174/ajnr.A5711
10.1016/j.cell.2015.12.028
10.3171/2014.5.JNS132279
10.1117/12.2293719
10.1126/science.aaf2666
10.1038/sdata.2017.117
10.1016/j.jmoldx.2013.05.011
10.1118/1.4948668
10.1007/s10278-017-0009-z
10.1016/j.neuroimage.2009.09.049
10.1101/456277
10.1016/j.neuroimage.2010.09.025
10.1007/978-1-4939-8751-1_17
10.1016/j.cmpb.2016.12.018
10.1002/hbm.20906
10.1109/TMI.2014.2377694
10.1215/15228517-2009-001
10.1007/s00330-018-5575-z
10.1016/j.neuroimage.2004.07.051
ContentType Journal Article
Copyright 2021 by American Journal of Neuroradiology.
2021 by American Journal of Neuroradiology 2021 American Journal of Neuroradiology
Copyright_xml – notice: 2021 by American Journal of Neuroradiology.
– notice: 2021 by American Journal of Neuroradiology 2021 American Journal of Neuroradiology
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.3174/ajnr.A7029
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1936-959X
EndPage 852
ExternalDocumentID PMC8115363
33664111
10_3174_ajnr_A7029
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: R01 CA260705
– fundername: NCI NIH HHS
  grantid: U01 CA207091
– fundername: NIH/NCI
  grantid: U01CA207091
GroupedDBID ---
.55
.GJ
23M
2WC
53G
5GY
5RE
5VS
6J9
AAEJM
AAYXX
ACGFO
ACIWK
ACPRK
ADBBV
AENEX
AFFNX
AFHIN
AFRAH
AJJEV
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BTFSW
C1A
CITATION
CS3
E3Z
EBS
EJD
EMOBN
F5P
F9R
GX1
H13
INIJC
KQ8
MV1
N9A
OK1
P2P
P6G
R0Z
RHI
RPM
TNE
TR2
UDS
W8F
WOQ
WOW
X7M
ZCG
ZGI
ZXP
ACRZS
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c444t-be78c80a85a014da095d75f2ba124c8710b01c444fda29b84f139eef0fc883f3
ISSN 0195-6108
1936-959X
IngestDate Thu Aug 21 14:02:30 EDT 2025
Fri Jul 11 15:36:26 EDT 2025
Thu Apr 03 07:00:56 EDT 2025
Tue Jul 01 01:45:14 EDT 2025
Thu Apr 24 22:59:13 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License 2021 by American Journal of Neuroradiology.
Indicates open access to non-subscribers at www.ajnr.org
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c444t-be78c80a85a014da095d75f2ba124c8710b01c444fda29b84f139eef0fc883f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-4645-1638
0000-0001-8853-3036
0000-0002-5440-8357
0000-0003-2835-986X
0000-0002-8388-8206
0000-0002-6384-1072
0000-0002-2160-6648
0000-0002-9123-9484
0000-0002-5524-7962
0000-0002-0058-6174
0000-0001-9913-1331
0000-0001-8695-9447
OpenAccessLink http://www.ajnr.org/content/ajnr/42/5/845.full.pdf
PMID 33664111
PQID 2498491098
PQPubID 23479
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8115363
proquest_miscellaneous_2498491098
pubmed_primary_33664111
crossref_citationtrail_10_3174_ajnr_A7029
crossref_primary_10_3174_ajnr_A7029
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-05-01
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle American journal of neuroradiology : AJNR
PublicationTitleAlternate AJNR Am J Neuroradiol
PublicationYear 2021
Publisher American Society of Neuroradiology
Publisher_xml – name: American Society of Neuroradiology
References 2022090904250787000_42.5.845.14
2022090904250787000_42.5.845.36
2022090904250787000_42.5.845.13
2022090904250787000_42.5.845.35
2022090904250787000_42.5.845.16
2022090904250787000_42.5.845.38
2022090904250787000_42.5.845.15
2022090904250787000_42.5.845.37
2022090904250787000_42.5.845.10
2022090904250787000_42.5.845.32
2022090904250787000_42.5.845.31
2022090904250787000_42.5.845.12
2022090904250787000_42.5.845.11
2022090904250787000_42.5.845.33
2022090904250787000_42.5.845.18
2022090904250787000_42.5.845.17
2022090904250787000_42.5.845.39
2022090904250787000_42.5.845.19
2022090904250787000_42.5.845.1
2022090904250787000_42.5.845.30
2022090904250787000_42.5.845.25
2022090904250787000_42.5.845.24
2022090904250787000_42.5.845.27
2022090904250787000_42.5.845.26
2022090904250787000_42.5.845.21
2022090904250787000_42.5.845.43
2022090904250787000_42.5.845.20
2022090904250787000_42.5.845.42
2022090904250787000_42.5.845.23
2022090904250787000_42.5.845.22
2022090904250787000_42.5.845.3
2022090904250787000_42.5.845.2
2022090904250787000_42.5.845.5
2022090904250787000_42.5.845.4
2022090904250787000_42.5.845.7
2022090904250787000_42.5.845.29
2022090904250787000_42.5.845.6
2022090904250787000_42.5.845.28
2022090904250787000_42.5.845.9
Han (2022090904250787000_42.5.845.34) 2018; 23
2022090904250787000_42.5.845.8
2022090904250787000_42.5.845.41
2022090904250787000_42.5.845.40
36423950 - AJNR Am J Neuroradiol. 2023 Jan;44(1):E1. doi: 10.3174/ajnr.A7715
36344219 - AJNR Am J Neuroradiol. 2022 Nov;43(11):E45-45. doi: 10.3174/ajnr.A7029_ERR
References_xml – ident: 2022090904250787000_42.5.845.42
  doi: 10.1007/s00401-012-1016-2
– ident: 2022090904250787000_42.5.845.2
  doi: 10.1016/S1470-2045(09)70025-7
– ident: 2022090904250787000_42.5.845.37
  doi: 10.3389/fncom.2019.00056
– ident: 2022090904250787000_42.5.845.43
  doi: 10.1038/nature07385
– ident: 2022090904250787000_42.5.845.10
  doi: 10.1038/s41598-019-50849-y
– ident: 2022090904250787000_42.5.845.36
  doi: 10.1109/CVPRW.2017.156
– ident: 2022090904250787000_42.5.845.12
  doi: 10.1093/noajnl/vdaa066
– ident: 2022090904250787000_42.5.845.6
  doi: 10.1007/s00234-011-0947-y
– ident: 2022090904250787000_42.5.845.13
  doi: 10.1093/neuonc/noz199
– ident: 2022090904250787000_42.5.845.27
  doi: 10.1016/j.neuroimage.2014.05.044
– ident: 2022090904250787000_42.5.845.3
  doi: 10.1007/s13311-017-0519-x
– ident: 2022090904250787000_42.5.845.23
  doi: 10.1002/hbm.10062
– ident: 2022090904250787000_42.5.845.26
  doi: 10.1016/j.neuroimage.2011.09.015
– ident: 2022090904250787000_42.5.845.1
  doi: 10.1056/NEJMoa043331
– ident: 2022090904250787000_42.5.845.32
– ident: 2022090904250787000_42.5.845.25
  doi: 10.1016/j.neuroimage.2008.10.055
– ident: 2022090904250787000_42.5.845.30
– ident: 2022090904250787000_42.5.845.35
  doi: 10.3174/ajnr.A5667
– ident: 2022090904250787000_42.5.845.14
  doi: 10.1007/s10278-013-9622-7
– ident: 2022090904250787000_42.5.845.40
  doi: 10.1038/s41598-019-47642-2
– ident: 2022090904250787000_42.5.845.4
  doi: 10.3174/ajnr.A5711
– ident: 2022090904250787000_42.5.845.17
  doi: 10.1016/j.cell.2015.12.028
– ident: 2022090904250787000_42.5.845.7
  doi: 10.3171/2014.5.JNS132279
– ident: 2022090904250787000_42.5.845.28
  doi: 10.1117/12.2293719
– ident: 2022090904250787000_42.5.845.15
  doi: 10.1126/science.aaf2666
– ident: 2022090904250787000_42.5.845.19
  doi: 10.1038/sdata.2017.117
– ident: 2022090904250787000_42.5.845.39
  doi: 10.1016/j.jmoldx.2013.05.011
– ident: 2022090904250787000_42.5.845.9
  doi: 10.1118/1.4948668
– ident: 2022090904250787000_42.5.845.33
  doi: 10.1007/s10278-017-0009-z
– ident: 2022090904250787000_42.5.845.5
  doi: 10.1016/j.neuroimage.2009.09.049
– ident: 2022090904250787000_42.5.845.20
  doi: 10.1093/neuonc/noz199
– ident: 2022090904250787000_42.5.845.29
  doi: 10.1101/456277
– ident: 2022090904250787000_42.5.845.21
  doi: 10.1016/j.neuroimage.2010.09.025
– volume: 23
  start-page: 331
  year: 2018
  ident: 2022090904250787000_42.5.845.34
  article-title: MRI to MGMT: predicting methylation status in glioblastoma patients using convolutional recurrent neural networks
  publication-title: Pac Symp Biocomput
– ident: 2022090904250787000_42.5.845.31
– ident: 2022090904250787000_42.5.845.41
  doi: 10.1007/978-1-4939-8751-1_17
– ident: 2022090904250787000_42.5.845.8
  doi: 10.1016/j.cmpb.2016.12.018
– ident: 2022090904250787000_42.5.845.22
  doi: 10.1002/hbm.20906
– ident: 2022090904250787000_42.5.845.18
  doi: 10.1109/TMI.2014.2377694
– ident: 2022090904250787000_42.5.845.16
– ident: 2022090904250787000_42.5.845.38
  doi: 10.1215/15228517-2009-001
– ident: 2022090904250787000_42.5.845.11
  doi: 10.1007/s00330-018-5575-z
– ident: 2022090904250787000_42.5.845.24
  doi: 10.1016/j.neuroimage.2004.07.051
– reference: 36423950 - AJNR Am J Neuroradiol. 2023 Jan;44(1):E1. doi: 10.3174/ajnr.A7715
– reference: 36344219 - AJNR Am J Neuroradiol. 2022 Nov;43(11):E45-45. doi: 10.3174/ajnr.A7029_ERR
SSID ssj0005972
Score 2.576534
Snippet ( ) promoter methylation confers an improved prognosis and treatment response in gliomas. We developed a deep learning network for determining promoter...
O6-Methylguanine-DNA methyltransferase (MGMT) promoter methylation confers an improved prognosis and treatment response in gliomas. We developed a deep...
Editorial expression of concern: In the May 2021 edition, the American Journal of Neuroradilogy published the article “MRI-Based Deep-Learning Method for...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 845
SubjectTerms Adult
Adult Brain
Aged
Area Under Curve
Brain Neoplasms - diagnostic imaging
Brain Neoplasms - genetics
Deep Learning
DNA Methylation
DNA Modification Methylases - genetics
DNA Repair Enzymes - genetics
Functional
Glioma - diagnostic imaging
Glioma - genetics
Humans
Magnetic Resonance Imaging - methods
Male
Middle Aged
Neural Networks, Computer
Promoter Regions, Genetic
Reproducibility of Results
Sensitivity and Specificity
Tumor Suppressor Proteins - genetics
Title MRI-Based Deep-Learning Method for Determining Glioma MGMT Promoter Methylation Status
URI https://www.ncbi.nlm.nih.gov/pubmed/33664111
https://www.proquest.com/docview/2498491098
https://pubmed.ncbi.nlm.nih.gov/PMC8115363
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLXKkKa9IL4pXzKCF4QcsthJnMe1QMdGKugK2lvkJM421KVV1wrBL-PncW3HqTP2AHuJKteNW9_T63tPro8RehXntAipZCSm3CcsiBOS84oTDslEmYexLHW1ezqO9r-yg-PwuNf77VQtrVe5V_y6cl_JdawKbWBXtUv2Pyzb3hQa4DXYF65gYbj-k43TyUcygGVIFRPLBflkaY5UHwutKwjfNeUummeanc3PxZt0lE7VBgEwklzqvj9NQZyOPBsiwArT2gc6jsKElsBcirKRb9LU4sF4svEfJ0JR0zoqHXojb-C1NM6p0CzOwJu0bWMxEz8a8d8j78hzELA-kReGnx15h57LTwS7m2pAZ0uA8lVNFaoiQjrf02U3kxByWd84ZGk8ckIjkoT6vN3WZbPAgWbo-F9utCntUm7EcS-vEhAyMbUEfq-X3l7sG8bFgcviXOOF0ihidinoanJ_ToccQmka0RvoZgAJijo74_DLRqce0rTAnoSpfpARxlUDv90Mu4O27RjdqOivVOdyxa4TAk1vo1tN7oL3DBDvoJ6s76LttKnOuIe-tXjEHTxig0cMeMQOHrHBI1Z4xBaP2MEjNni8j6Yf3k-H-6Q5t4MUjLEVyWXMC-4LHgpIwEsBUXwZh1WQCwgmC8jQFfmuulalCJKcswrSECkrvyo4pxV9gLbqeS0fIcxLyLAhgeEQBjPmU1HAihTmrAr8SNIw6aPXdtqyotG0V0erzDLIbdVsZ2q2Mz3bffSy7bswSi5X9nphZz8DR6uenolaztcXWcASziC4TngfPTTWaO9jzdhHccdObQcl4t59pz471WLuDY4eX_uTT9DO5m_3FG2tlmv5DALlVf5cY_IPGmm_FA
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MRI-Based+Deep-Learning+Method+for+Determining+Glioma+MGMT+Promoter+Methylation+Status&rft.jtitle=American+journal+of+neuroradiology+%3A+AJNR&rft.au=Yogananda%2C+C.G.B.&rft.au=Shah%2C+B.R.&rft.au=Nalawade%2C+S.S.&rft.au=Murugesan%2C+G.K.&rft.date=2021-05-01&rft.pub=American+Society+of+Neuroradiology&rft.issn=0195-6108&rft.eissn=1936-959X&rft.volume=42&rft.issue=5&rft.spage=845&rft.epage=852&rft_id=info:doi/10.3174%2Fajnr.A7029&rft_id=info%3Apmid%2F33664111&rft.externalDocID=PMC8115363
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0195-6108&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0195-6108&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0195-6108&client=summon