MRI-Based Deep-Learning Method for Determining Glioma MGMT Promoter Methylation Status
( ) promoter methylation confers an improved prognosis and treatment response in gliomas. We developed a deep learning network for determining promoter methylation status using T2 weighted Images (T2WI) only. Brain MR imaging and corresponding genomic information were obtained for 247 subjects from...
Saved in:
Published in | American journal of neuroradiology : AJNR Vol. 42; no. 5; pp. 845 - 852 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Society of Neuroradiology
01.05.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | (
) promoter methylation confers an improved prognosis and treatment response in gliomas. We developed a deep learning network for determining
promoter methylation status using T2 weighted Images (T2WI) only.
Brain MR imaging and corresponding genomic information were obtained for 247 subjects from The Cancer Imaging Archive and The Cancer Genome Atlas. One hundred sixty-three subjects had a methylated
promoter. A T2WI-only network (
-net) was developed to determine
promoter methylation status and simultaneous single-label tumor segmentation. The network was trained using 3D-dense-UNets. Three-fold cross-validation was performed to generalize the performance of the networks. Dice scores were computed to determine tumor-segmentation accuracy.
The
-net demonstrated a mean cross-validation accuracy of 94.73% across the 3 folds (95.12%, 93.98%, and 95.12%, [SD, 0.66%]) in predicting
methylation status with a sensitivity and specificity of 96.31% [SD, 0.04%] and 91.66% [SD, 2.06%], respectively, and a mean area under the curve of 0.93 [SD, 0.01]. The whole tumor-segmentation mean Dice score was 0.82 [SD, 0.008].
We demonstrate high classification accuracy in predicting
promoter methylation status using only T2WI. Our network surpasses the sensitivity, specificity, and accuracy of histologic and molecular methods. This result represents an important milestone toward using MR imaging to predict prognosis and treatment response. |
---|---|
AbstractList | Editorial expression of concern:
In the May 2021 edition, the
American Journal of Neuroradilogy
published the article “MRI-Based Deep-Learning Method for Determining Glioma MGMT Promoter Methylation Status” by Yogananda CGB, et al.
1
On August 22, 2022, the authors self-reported data errors related to the computer code and the training and testing data sets. The authors are now in the process of re-evaluating the accuracies using the correct test set. This notice of concern is to inform readers about these possible issues related to this articles results. After additional tests from the authors on the correct dataset are available, we will determine what additional action is warranted, such as an erratum.
1. Yogananda CGB, Shah BR, Nalawade SS, et al. MRI-based deep-learning method for determining glioma MGMT promoter methylation status.
American Journal of Neuroradilogy
. 2021;42(5):845-852. doi:
10.3174/AJNR.A7029 ( ) promoter methylation confers an improved prognosis and treatment response in gliomas. We developed a deep learning network for determining promoter methylation status using T2 weighted Images (T2WI) only. Brain MR imaging and corresponding genomic information were obtained for 247 subjects from The Cancer Imaging Archive and The Cancer Genome Atlas. One hundred sixty-three subjects had a methylated promoter. A T2WI-only network ( -net) was developed to determine promoter methylation status and simultaneous single-label tumor segmentation. The network was trained using 3D-dense-UNets. Three-fold cross-validation was performed to generalize the performance of the networks. Dice scores were computed to determine tumor-segmentation accuracy. The -net demonstrated a mean cross-validation accuracy of 94.73% across the 3 folds (95.12%, 93.98%, and 95.12%, [SD, 0.66%]) in predicting methylation status with a sensitivity and specificity of 96.31% [SD, 0.04%] and 91.66% [SD, 2.06%], respectively, and a mean area under the curve of 0.93 [SD, 0.01]. The whole tumor-segmentation mean Dice score was 0.82 [SD, 0.008]. We demonstrate high classification accuracy in predicting promoter methylation status using only T2WI. Our network surpasses the sensitivity, specificity, and accuracy of histologic and molecular methods. This result represents an important milestone toward using MR imaging to predict prognosis and treatment response. O6-Methylguanine-DNA methyltransferase (MGMT) promoter methylation confers an improved prognosis and treatment response in gliomas. We developed a deep learning network for determining MGMT promoter methylation status using T2 weighted Images (T2WI) only.BACKGROUND AND PURPOSEO6-Methylguanine-DNA methyltransferase (MGMT) promoter methylation confers an improved prognosis and treatment response in gliomas. We developed a deep learning network for determining MGMT promoter methylation status using T2 weighted Images (T2WI) only.Brain MR imaging and corresponding genomic information were obtained for 247 subjects from The Cancer Imaging Archive and The Cancer Genome Atlas. One hundred sixty-three subjects had a methylated MGMT promoter. A T2WI-only network (MGMT-net) was developed to determine MGMT promoter methylation status and simultaneous single-label tumor segmentation. The network was trained using 3D-dense-UNets. Three-fold cross-validation was performed to generalize the performance of the networks. Dice scores were computed to determine tumor-segmentation accuracy.MATERIALS AND METHODSBrain MR imaging and corresponding genomic information were obtained for 247 subjects from The Cancer Imaging Archive and The Cancer Genome Atlas. One hundred sixty-three subjects had a methylated MGMT promoter. A T2WI-only network (MGMT-net) was developed to determine MGMT promoter methylation status and simultaneous single-label tumor segmentation. The network was trained using 3D-dense-UNets. Three-fold cross-validation was performed to generalize the performance of the networks. Dice scores were computed to determine tumor-segmentation accuracy.The MGMT-net demonstrated a mean cross-validation accuracy of 94.73% across the 3 folds (95.12%, 93.98%, and 95.12%, [SD, 0.66%]) in predicting MGMT methylation status with a sensitivity and specificity of 96.31% [SD, 0.04%] and 91.66% [SD, 2.06%], respectively, and a mean area under the curve of 0.93 [SD, 0.01]. The whole tumor-segmentation mean Dice score was 0.82 [SD, 0.008].RESULTSThe MGMT-net demonstrated a mean cross-validation accuracy of 94.73% across the 3 folds (95.12%, 93.98%, and 95.12%, [SD, 0.66%]) in predicting MGMT methylation status with a sensitivity and specificity of 96.31% [SD, 0.04%] and 91.66% [SD, 2.06%], respectively, and a mean area under the curve of 0.93 [SD, 0.01]. The whole tumor-segmentation mean Dice score was 0.82 [SD, 0.008].We demonstrate high classification accuracy in predicting MGMT promoter methylation status using only T2WI. Our network surpasses the sensitivity, specificity, and accuracy of histologic and molecular methods. This result represents an important milestone toward using MR imaging to predict prognosis and treatment response.CONCLUSIONSWe demonstrate high classification accuracy in predicting MGMT promoter methylation status using only T2WI. Our network surpasses the sensitivity, specificity, and accuracy of histologic and molecular methods. This result represents an important milestone toward using MR imaging to predict prognosis and treatment response. |
Author | Nalawade, S.S. Patel, T.R. Fei, B. Pinho, M.C. Shah, B.R. Wagner, B.C. Mickey, B. Madhuranthakam, A.J. Yu, F.F. Maldjian, J.A. Murugesan, G.K. Yogananda, C.G.B. |
Author_xml | – sequence: 1 givenname: C.G.B. orcidid: 0000-0001-8853-3036 surname: Yogananda fullname: Yogananda, C.G.B. – sequence: 2 givenname: B.R. orcidid: 0000-0002-0058-6174 surname: Shah fullname: Shah, B.R. – sequence: 3 givenname: S.S. orcidid: 0000-0002-5440-8357 surname: Nalawade fullname: Nalawade, S.S. – sequence: 4 givenname: G.K. orcidid: 0000-0002-2160-6648 surname: Murugesan fullname: Murugesan, G.K. – sequence: 5 givenname: F.F. orcidid: 0000-0001-9913-1331 surname: Yu fullname: Yu, F.F. – sequence: 6 givenname: M.C. orcidid: 0000-0002-4645-1638 surname: Pinho fullname: Pinho, M.C. – sequence: 7 givenname: B.C. orcidid: 0000-0003-2835-986X surname: Wagner fullname: Wagner, B.C. – sequence: 8 givenname: B. orcidid: 0000-0001-8695-9447 surname: Mickey fullname: Mickey, B. – sequence: 9 givenname: T.R. orcidid: 0000-0002-8388-8206 surname: Patel fullname: Patel, T.R. – sequence: 10 givenname: B. orcidid: 0000-0002-9123-9484 surname: Fei fullname: Fei, B. – sequence: 11 givenname: A.J. orcidid: 0000-0002-5524-7962 surname: Madhuranthakam fullname: Madhuranthakam, A.J. – sequence: 12 givenname: J.A. orcidid: 0000-0002-6384-1072 surname: Maldjian fullname: Maldjian, J.A. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33664111$$D View this record in MEDLINE/PubMed |
BookMark | eNptkV9LHDEUxUNR6mr74geQeSzCaO4kM5O8FOyqq7BLS7uUvoXMzI1GZpJtkhX89s6uf6jSpwv3_O45cM8-2XHeISGHQE8Y1PxU37lwclbTQn4gE5CsymUp_-yQCQVZ5hVQsUf2Y7yjlJayLj6SPcaqigPAhPxe_LzOv-mIXXaOuMrnqIOz7iZbYLr1XWZ8GIWEYbDb9ay3ftDZYrZYZj-CH_wobdmHXifrXfYr6bSOn8iu0X3Ez8_zgCwvL5bTq3z-fXY9PZvnLec85Q3WohVUi1JT4J2msuzq0hSNhoK3ogbaUNigptOFbAQ3wCSioaYVghl2QL4-2a7WzYBdiy4F3atVsIMOD8prq94qzt6qG3-vBEDJKjYafHk2CP7vGmNSg40t9r126NdRFVwKLoFKMaJH_2a9hrz8cgToE9AGH2NAo1qbtk8Zo22vgKpNXWpTl9rWNZ4cvzt5cf0P_AjCP5dh |
CitedBy_id | crossref_primary_10_1007_s10278_022_00757_x crossref_primary_10_1177_10732748231169149 crossref_primary_10_1016_j_acra_2024_07_036 crossref_primary_10_31083_j_fbl2809197 crossref_primary_10_3390_cancers16213635 crossref_primary_10_3390_diagnostics12081938 crossref_primary_10_3389_fneur_2024_1345687 crossref_primary_10_1016_j_bspc_2023_105122 crossref_primary_10_1016_j_knosys_2023_110937 crossref_primary_10_1002_btm2_10553 crossref_primary_10_1016_j_critrevonc_2025_104682 crossref_primary_10_1007_s00521_024_09757_0 crossref_primary_10_3389_fonc_2022_796583 crossref_primary_10_3390_diagnostics15070797 crossref_primary_10_3390_jcm11154625 crossref_primary_10_1093_neuonc_noab249 crossref_primary_10_1186_s12916_024_03575_w crossref_primary_10_1016_j_clineuro_2024_108409 crossref_primary_10_1109_ACCESS_2021_3136293 crossref_primary_10_3390_biomedicines10102490 crossref_primary_10_1117_1_JMI_9_1_016001 crossref_primary_10_1016_j_media_2023_102989 crossref_primary_10_1016_j_semcancer_2023_03_006 crossref_primary_10_1016_j_currproblcancer_2024_101156 crossref_primary_10_3389_fonc_2022_924245 crossref_primary_10_1016_j_eij_2024_100583 crossref_primary_10_3174_ajnr_A7029_ERR crossref_primary_10_1212_CON_0000000000001202 crossref_primary_10_3390_info13030124 crossref_primary_10_1002_cncr_34540 crossref_primary_10_1007_s00234_024_03329_8 crossref_primary_10_3389_fonc_2022_892056 crossref_primary_10_3390_cancers13246186 crossref_primary_10_3389_fonc_2022_963612 crossref_primary_10_1038_s41598_025_87803_0 crossref_primary_10_3390_cancers14194827 crossref_primary_10_1016_j_humgen_2022_201140 crossref_primary_10_3174_ajnr_A8148 crossref_primary_10_1093_noajnl_vdae225 crossref_primary_10_1016_j_isci_2022_105872 crossref_primary_10_3390_jimaging8120321 crossref_primary_10_1007_s00330_023_09944_y crossref_primary_10_1016_j_compbiomed_2022_106492 crossref_primary_10_3390_cancers16030576 crossref_primary_10_3390_biomedicines12092156 crossref_primary_10_1038_s41698_024_00789_2 crossref_primary_10_1016_j_ejrad_2022_110560 crossref_primary_10_1093_pcmedi_pbab026 crossref_primary_10_3390_diagnostics15030251 crossref_primary_10_1038_s41598_024_66653_2 crossref_primary_10_3389_fradi_2022_1061402 crossref_primary_10_1007_s00234_023_03196_9 crossref_primary_10_1007_s00521_023_08405_3 crossref_primary_10_1186_s40644_024_00817_1 crossref_primary_10_3390_molecules28155660 crossref_primary_10_3390_jcm11195961 crossref_primary_10_3390_cancers15082253 |
Cites_doi | 10.1007/s00401-012-1016-2 10.1016/S1470-2045(09)70025-7 10.3389/fncom.2019.00056 10.1038/nature07385 10.1038/s41598-019-50849-y 10.1109/CVPRW.2017.156 10.1093/noajnl/vdaa066 10.1007/s00234-011-0947-y 10.1093/neuonc/noz199 10.1016/j.neuroimage.2014.05.044 10.1007/s13311-017-0519-x 10.1002/hbm.10062 10.1016/j.neuroimage.2011.09.015 10.1056/NEJMoa043331 10.1016/j.neuroimage.2008.10.055 10.3174/ajnr.A5667 10.1007/s10278-013-9622-7 10.1038/s41598-019-47642-2 10.3174/ajnr.A5711 10.1016/j.cell.2015.12.028 10.3171/2014.5.JNS132279 10.1117/12.2293719 10.1126/science.aaf2666 10.1038/sdata.2017.117 10.1016/j.jmoldx.2013.05.011 10.1118/1.4948668 10.1007/s10278-017-0009-z 10.1016/j.neuroimage.2009.09.049 10.1101/456277 10.1016/j.neuroimage.2010.09.025 10.1007/978-1-4939-8751-1_17 10.1016/j.cmpb.2016.12.018 10.1002/hbm.20906 10.1109/TMI.2014.2377694 10.1215/15228517-2009-001 10.1007/s00330-018-5575-z 10.1016/j.neuroimage.2004.07.051 |
ContentType | Journal Article |
Copyright | 2021 by American Journal of Neuroradiology. 2021 by American Journal of Neuroradiology 2021 American Journal of Neuroradiology |
Copyright_xml | – notice: 2021 by American Journal of Neuroradiology. – notice: 2021 by American Journal of Neuroradiology 2021 American Journal of Neuroradiology |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.3174/ajnr.A7029 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1936-959X |
EndPage | 852 |
ExternalDocumentID | PMC8115363 33664111 10_3174_ajnr_A7029 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: R01 CA260705 – fundername: NCI NIH HHS grantid: U01 CA207091 – fundername: NIH/NCI grantid: U01CA207091 |
GroupedDBID | --- .55 .GJ 23M 2WC 53G 5GY 5RE 5VS 6J9 AAEJM AAYXX ACGFO ACIWK ACPRK ADBBV AENEX AFFNX AFHIN AFRAH AJJEV ALMA_UNASSIGNED_HOLDINGS BAWUL BTFSW C1A CITATION CS3 E3Z EBS EJD EMOBN F5P F9R GX1 H13 INIJC KQ8 MV1 N9A OK1 P2P P6G R0Z RHI RPM TNE TR2 UDS W8F WOQ WOW X7M ZCG ZGI ZXP ACRZS CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c444t-be78c80a85a014da095d75f2ba124c8710b01c444fda29b84f139eef0fc883f3 |
ISSN | 0195-6108 1936-959X |
IngestDate | Thu Aug 21 14:02:30 EDT 2025 Fri Jul 11 15:36:26 EDT 2025 Thu Apr 03 07:00:56 EDT 2025 Tue Jul 01 01:45:14 EDT 2025 Thu Apr 24 22:59:13 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | 2021 by American Journal of Neuroradiology. Indicates open access to non-subscribers at www.ajnr.org |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c444t-be78c80a85a014da095d75f2ba124c8710b01c444fda29b84f139eef0fc883f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-4645-1638 0000-0001-8853-3036 0000-0002-5440-8357 0000-0003-2835-986X 0000-0002-8388-8206 0000-0002-6384-1072 0000-0002-2160-6648 0000-0002-9123-9484 0000-0002-5524-7962 0000-0002-0058-6174 0000-0001-9913-1331 0000-0001-8695-9447 |
OpenAccessLink | http://www.ajnr.org/content/ajnr/42/5/845.full.pdf |
PMID | 33664111 |
PQID | 2498491098 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8115363 proquest_miscellaneous_2498491098 pubmed_primary_33664111 crossref_citationtrail_10_3174_ajnr_A7029 crossref_primary_10_3174_ajnr_A7029 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-05-01 |
PublicationDateYYYYMMDD | 2021-05-01 |
PublicationDate_xml | – month: 05 year: 2021 text: 2021-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | American journal of neuroradiology : AJNR |
PublicationTitleAlternate | AJNR Am J Neuroradiol |
PublicationYear | 2021 |
Publisher | American Society of Neuroradiology |
Publisher_xml | – name: American Society of Neuroradiology |
References | 2022090904250787000_42.5.845.14 2022090904250787000_42.5.845.36 2022090904250787000_42.5.845.13 2022090904250787000_42.5.845.35 2022090904250787000_42.5.845.16 2022090904250787000_42.5.845.38 2022090904250787000_42.5.845.15 2022090904250787000_42.5.845.37 2022090904250787000_42.5.845.10 2022090904250787000_42.5.845.32 2022090904250787000_42.5.845.31 2022090904250787000_42.5.845.12 2022090904250787000_42.5.845.11 2022090904250787000_42.5.845.33 2022090904250787000_42.5.845.18 2022090904250787000_42.5.845.17 2022090904250787000_42.5.845.39 2022090904250787000_42.5.845.19 2022090904250787000_42.5.845.1 2022090904250787000_42.5.845.30 2022090904250787000_42.5.845.25 2022090904250787000_42.5.845.24 2022090904250787000_42.5.845.27 2022090904250787000_42.5.845.26 2022090904250787000_42.5.845.21 2022090904250787000_42.5.845.43 2022090904250787000_42.5.845.20 2022090904250787000_42.5.845.42 2022090904250787000_42.5.845.23 2022090904250787000_42.5.845.22 2022090904250787000_42.5.845.3 2022090904250787000_42.5.845.2 2022090904250787000_42.5.845.5 2022090904250787000_42.5.845.4 2022090904250787000_42.5.845.7 2022090904250787000_42.5.845.29 2022090904250787000_42.5.845.6 2022090904250787000_42.5.845.28 2022090904250787000_42.5.845.9 Han (2022090904250787000_42.5.845.34) 2018; 23 2022090904250787000_42.5.845.8 2022090904250787000_42.5.845.41 2022090904250787000_42.5.845.40 36423950 - AJNR Am J Neuroradiol. 2023 Jan;44(1):E1. doi: 10.3174/ajnr.A7715 36344219 - AJNR Am J Neuroradiol. 2022 Nov;43(11):E45-45. doi: 10.3174/ajnr.A7029_ERR |
References_xml | – ident: 2022090904250787000_42.5.845.42 doi: 10.1007/s00401-012-1016-2 – ident: 2022090904250787000_42.5.845.2 doi: 10.1016/S1470-2045(09)70025-7 – ident: 2022090904250787000_42.5.845.37 doi: 10.3389/fncom.2019.00056 – ident: 2022090904250787000_42.5.845.43 doi: 10.1038/nature07385 – ident: 2022090904250787000_42.5.845.10 doi: 10.1038/s41598-019-50849-y – ident: 2022090904250787000_42.5.845.36 doi: 10.1109/CVPRW.2017.156 – ident: 2022090904250787000_42.5.845.12 doi: 10.1093/noajnl/vdaa066 – ident: 2022090904250787000_42.5.845.6 doi: 10.1007/s00234-011-0947-y – ident: 2022090904250787000_42.5.845.13 doi: 10.1093/neuonc/noz199 – ident: 2022090904250787000_42.5.845.27 doi: 10.1016/j.neuroimage.2014.05.044 – ident: 2022090904250787000_42.5.845.3 doi: 10.1007/s13311-017-0519-x – ident: 2022090904250787000_42.5.845.23 doi: 10.1002/hbm.10062 – ident: 2022090904250787000_42.5.845.26 doi: 10.1016/j.neuroimage.2011.09.015 – ident: 2022090904250787000_42.5.845.1 doi: 10.1056/NEJMoa043331 – ident: 2022090904250787000_42.5.845.32 – ident: 2022090904250787000_42.5.845.25 doi: 10.1016/j.neuroimage.2008.10.055 – ident: 2022090904250787000_42.5.845.30 – ident: 2022090904250787000_42.5.845.35 doi: 10.3174/ajnr.A5667 – ident: 2022090904250787000_42.5.845.14 doi: 10.1007/s10278-013-9622-7 – ident: 2022090904250787000_42.5.845.40 doi: 10.1038/s41598-019-47642-2 – ident: 2022090904250787000_42.5.845.4 doi: 10.3174/ajnr.A5711 – ident: 2022090904250787000_42.5.845.17 doi: 10.1016/j.cell.2015.12.028 – ident: 2022090904250787000_42.5.845.7 doi: 10.3171/2014.5.JNS132279 – ident: 2022090904250787000_42.5.845.28 doi: 10.1117/12.2293719 – ident: 2022090904250787000_42.5.845.15 doi: 10.1126/science.aaf2666 – ident: 2022090904250787000_42.5.845.19 doi: 10.1038/sdata.2017.117 – ident: 2022090904250787000_42.5.845.39 doi: 10.1016/j.jmoldx.2013.05.011 – ident: 2022090904250787000_42.5.845.9 doi: 10.1118/1.4948668 – ident: 2022090904250787000_42.5.845.33 doi: 10.1007/s10278-017-0009-z – ident: 2022090904250787000_42.5.845.5 doi: 10.1016/j.neuroimage.2009.09.049 – ident: 2022090904250787000_42.5.845.20 doi: 10.1093/neuonc/noz199 – ident: 2022090904250787000_42.5.845.29 doi: 10.1101/456277 – ident: 2022090904250787000_42.5.845.21 doi: 10.1016/j.neuroimage.2010.09.025 – volume: 23 start-page: 331 year: 2018 ident: 2022090904250787000_42.5.845.34 article-title: MRI to MGMT: predicting methylation status in glioblastoma patients using convolutional recurrent neural networks publication-title: Pac Symp Biocomput – ident: 2022090904250787000_42.5.845.31 – ident: 2022090904250787000_42.5.845.41 doi: 10.1007/978-1-4939-8751-1_17 – ident: 2022090904250787000_42.5.845.8 doi: 10.1016/j.cmpb.2016.12.018 – ident: 2022090904250787000_42.5.845.22 doi: 10.1002/hbm.20906 – ident: 2022090904250787000_42.5.845.18 doi: 10.1109/TMI.2014.2377694 – ident: 2022090904250787000_42.5.845.16 – ident: 2022090904250787000_42.5.845.38 doi: 10.1215/15228517-2009-001 – ident: 2022090904250787000_42.5.845.11 doi: 10.1007/s00330-018-5575-z – ident: 2022090904250787000_42.5.845.24 doi: 10.1016/j.neuroimage.2004.07.051 – reference: 36423950 - AJNR Am J Neuroradiol. 2023 Jan;44(1):E1. doi: 10.3174/ajnr.A7715 – reference: 36344219 - AJNR Am J Neuroradiol. 2022 Nov;43(11):E45-45. doi: 10.3174/ajnr.A7029_ERR |
SSID | ssj0005972 |
Score | 2.576534 |
Snippet | (
) promoter methylation confers an improved prognosis and treatment response in gliomas. We developed a deep learning network for determining
promoter... O6-Methylguanine-DNA methyltransferase (MGMT) promoter methylation confers an improved prognosis and treatment response in gliomas. We developed a deep... Editorial expression of concern: In the May 2021 edition, the American Journal of Neuroradilogy published the article “MRI-Based Deep-Learning Method for... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 845 |
SubjectTerms | Adult Adult Brain Aged Area Under Curve Brain Neoplasms - diagnostic imaging Brain Neoplasms - genetics Deep Learning DNA Methylation DNA Modification Methylases - genetics DNA Repair Enzymes - genetics Functional Glioma - diagnostic imaging Glioma - genetics Humans Magnetic Resonance Imaging - methods Male Middle Aged Neural Networks, Computer Promoter Regions, Genetic Reproducibility of Results Sensitivity and Specificity Tumor Suppressor Proteins - genetics |
Title | MRI-Based Deep-Learning Method for Determining Glioma MGMT Promoter Methylation Status |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33664111 https://www.proquest.com/docview/2498491098 https://pubmed.ncbi.nlm.nih.gov/PMC8115363 |
Volume | 42 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLXKkKa9IL4pXzKCF4QcsthJnMe1QMdGKugK2lvkJM421KVV1wrBL-PncW3HqTP2AHuJKteNW9_T63tPro8RehXntAipZCSm3CcsiBOS84oTDslEmYexLHW1ezqO9r-yg-PwuNf77VQtrVe5V_y6cl_JdawKbWBXtUv2Pyzb3hQa4DXYF65gYbj-k43TyUcygGVIFRPLBflkaY5UHwutKwjfNeUummeanc3PxZt0lE7VBgEwklzqvj9NQZyOPBsiwArT2gc6jsKElsBcirKRb9LU4sF4svEfJ0JR0zoqHXojb-C1NM6p0CzOwJu0bWMxEz8a8d8j78hzELA-kReGnx15h57LTwS7m2pAZ0uA8lVNFaoiQjrf02U3kxByWd84ZGk8ckIjkoT6vN3WZbPAgWbo-F9utCntUm7EcS-vEhAyMbUEfq-X3l7sG8bFgcviXOOF0ihidinoanJ_ToccQmka0RvoZgAJijo74_DLRqce0rTAnoSpfpARxlUDv90Mu4O27RjdqOivVOdyxa4TAk1vo1tN7oL3DBDvoJ6s76LttKnOuIe-tXjEHTxig0cMeMQOHrHBI1Z4xBaP2MEjNni8j6Yf3k-H-6Q5t4MUjLEVyWXMC-4LHgpIwEsBUXwZh1WQCwgmC8jQFfmuulalCJKcswrSECkrvyo4pxV9gLbqeS0fIcxLyLAhgeEQBjPmU1HAihTmrAr8SNIw6aPXdtqyotG0V0erzDLIbdVsZ2q2Mz3bffSy7bswSi5X9nphZz8DR6uenolaztcXWcASziC4TngfPTTWaO9jzdhHccdObQcl4t59pz471WLuDY4eX_uTT9DO5m_3FG2tlmv5DALlVf5cY_IPGmm_FA |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MRI-Based+Deep-Learning+Method+for+Determining+Glioma+MGMT+Promoter+Methylation+Status&rft.jtitle=American+journal+of+neuroradiology+%3A+AJNR&rft.au=Yogananda%2C+C.G.B.&rft.au=Shah%2C+B.R.&rft.au=Nalawade%2C+S.S.&rft.au=Murugesan%2C+G.K.&rft.date=2021-05-01&rft.pub=American+Society+of+Neuroradiology&rft.issn=0195-6108&rft.eissn=1936-959X&rft.volume=42&rft.issue=5&rft.spage=845&rft.epage=852&rft_id=info:doi/10.3174%2Fajnr.A7029&rft_id=info%3Apmid%2F33664111&rft.externalDocID=PMC8115363 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0195-6108&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0195-6108&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0195-6108&client=summon |