Deficiency of miR-155 in Leukemic B-Cells Results in Cell Cycle Arrest and Deregulation of MIR155HG/TP53INP1/CDKN1A/CCND1 network

Cell cycle progression and leukemia development are tightly regulated processes in which even a small imbalance in the expression of cell cycle regulatory molecules and microRNAs (miRNAs) can lead to an increased risk of cancer/leukemia development. Here, we focus on the study of a ubiquitous, multi...

Full description

Saved in:
Bibliographic Details
Published inArchives of medical research Vol. 56; no. 3; p. 103124
Main Authors Golovina, Elena, Kokavec, Juraj, Kazantsev, Dmitry, Yurikova, Oxana, Bajecny, Martin, Savvulidi, Filipp Georgijevic, Simersky, Radim, Lenobel, Rene, Tost, Jorg, Herynek, Vit, Sefc, Ludek, Sebela, Marek, Klener, Pavel, Zemanova, Zuzana, Stopka, Tomas, Vargova, Karina Savvulidi
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.04.2025
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Cell cycle progression and leukemia development are tightly regulated processes in which even a small imbalance in the expression of cell cycle regulatory molecules and microRNAs (miRNAs) can lead to an increased risk of cancer/leukemia development. Here, we focus on the study of a ubiquitous, multifunctional, and oncogenic miRNA-hsa-miR-155–5p (miR-155, MIR155HG), which is overexpressed in malignancies including chronic lymphocytic leukemia (CLL). Nonetheless, the precise mechanism of how miR-155 regulates the cell cycle in leukemic cells remains the subject of extensive research. We edited the CLL cell line MEC-1 by CRISPR/Cas9 to introduce a short deletion within the MIR155HG gene. To describe changes at the transcriptome and miRNome level in miR-155-deficient cells, we performed mRNA-seq/miRNA-seq and validated changes by qRT-PCR. Flow cytometry was used to measure cell cycle kinetics. A WST-1 assay, hemocytometer, and Annexin V/PI staining assessed cell viability and proliferation. The limited but phenotypically robust miR-155 modification impaired cell proliferation, cell cycle, and cell ploidy. This was accompanied by overexpression of the negative cell cycle regulator p21/CDKN1A and Cyclin D1 (CCND1). We confirmed the overexpression of canonical miR-155 targets such as PU.1, FOS, SHIP-1, TP53INP1 and revealed new potential targets (FCRL5, ISG15, and MX1). We demonstrate that miR-155 deficiency impairs cell proliferation, cell cycle, transcriptome, and miRNome via deregulation of the MIR155HG/TP53INP1/CDKN1A/CCND1 axis. Our CLL model is valuable for further studies to manipulate miRNA levels to revert highly aggressive leukemic cells to nearly benign or non-leukemic types.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0188-4409
1873-5487
1873-5487
DOI:10.1016/j.arcmed.2024.103124