Design and Control of a Piezoelectric-Driven Microgripper Perceiving Displacement and Gripping Force

A piezoelectric-driven microgripper with three-stage amplification was designed, which is able to perceive the tip displacement and gripping force. The key structure parameters of the microgripper were determined by finite element optimization and its theoretical amplification ratio was derived. The...

Full description

Saved in:
Bibliographic Details
Published inMicromachines (Basel) Vol. 11; no. 2; p. 121
Main Authors Zhao, Yanru, Huang, Xiaojie, Liu, Yong, Wang, Geng, Hong, Kunpeng
Format Journal Article
LanguageEnglish
Published Switzerland MDPI 21.01.2020
MDPI AG
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A piezoelectric-driven microgripper with three-stage amplification was designed, which is able to perceive the tip displacement and gripping force. The key structure parameters of the microgripper were determined by finite element optimization and its theoretical amplification ratio was derived. The tracking experiments of the tip displacement and gripping force were conducted with a PID controller. It is shown that the standard deviation of tracking error of the tip displacement is less than 0.2 μm and the gripping force is 0.35 mN under a closed-loop control. It would provide some references for realizing high-precision microassembly tasks with the designed microgripper which can control the displacement and gripping force accurately.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2072-666X
2072-666X
DOI:10.3390/mi11020121