Comprehensive model for a slag bath in electroslag remelting process with a current-conductive mould

A mathematical model was developed to describe the interaction of multiple physical fields in a slag bath during electroslag remelting (ESR) process with a current-conductive mould. The distributions of current density, magnetic induction intensity, electromagnetic force, Joule heating, fluid flow a...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of minerals, metallurgy and materials Vol. 19; no. 4; pp. 303 - 311
Main Authors Liu, Fu-bin, Zang, Xi-min, Jiang, Zhou-hua, Geng, Xin, Yao, Man
Format Journal Article
LanguageEnglish
Published Beijing University of Science and Technology Beijing 01.04.2012
Springer Nature B.V
School of Materials and Metallurgy, Northeastern University, Shenyang 110819, China%School of Materials and Metallurgy, University of Science and Technology Liaoning, Anshang 114051, China%School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A mathematical model was developed to describe the interaction of multiple physical fields in a slag bath during electroslag remelting (ESR) process with a current-conductive mould. The distributions of current density, magnetic induction intensity, electromagnetic force, Joule heating, fluid flow and temperature were simulated. The model was verified by temperature measurements during remelting 12CrMoVG steel with a slag of 50wt%-70wt% CaF2, 20wt%-30wt% CaO, 10wt%-20wt% A1203, and 〈10wt% SiO2 in a 600 mm diameter current-conductive mould. There is a good agreement between the calculated temperature results and the measured data in the slag bath. The calculated results show that the maximum values of current density, electromagnetic force and Joule heating are in the region between the comer electrodes and the conductivity element. The characteristics of current density distribution, magnetic induction intensity, electromagnetic force, Joule heating, velocity patterns and temperature profiles in the slag bath during ESR process with current-conductive mould were analyzed.
Bibliography:A mathematical model was developed to describe the interaction of multiple physical fields in a slag bath during electroslag remelting (ESR) process with a current-conductive mould. The distributions of current density, magnetic induction intensity, electromagnetic force, Joule heating, fluid flow and temperature were simulated. The model was verified by temperature measurements during remelting 12CrMoVG steel with a slag of 50wt%-70wt% CaF2, 20wt%-30wt% CaO, 10wt%-20wt% A1203, and 〈10wt% SiO2 in a 600 mm diameter current-conductive mould. There is a good agreement between the calculated temperature results and the measured data in the slag bath. The calculated results show that the maximum values of current density, electromagnetic force and Joule heating are in the region between the comer electrodes and the conductivity element. The characteristics of current density distribution, magnetic induction intensity, electromagnetic force, Joule heating, velocity patterns and temperature profiles in the slag bath during ESR process with current-conductive mould were analyzed.
electroslag remelting; mathematical models; slag bath; temperature distribution
11-5787/T
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:1674-4799
1869-103X
DOI:10.1007/s12613-012-0555-9