Carbon-Based Band Gap Engineering in the h-BN Analytical Modeling
The absence of a band gap in graphene is a hindrance to its application in electronic devices. Alternately, the complete replacement of carbon atoms with B and N atoms in graphene structures led to the formation of hexagonal boron nitride (h-BN) and caused the opening of its gap. Now, an exciting po...
Saved in:
Published in | Materials Vol. 13; no. 5; p. 1026 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI
25.02.2020
MDPI AG |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The absence of a band gap in graphene is a hindrance to its application in electronic devices. Alternately, the complete replacement of carbon atoms with B and N atoms in graphene structures led to the formation of hexagonal boron nitride (h-BN) and caused the opening of its gap. Now, an exciting possibility is a partial substitution of C atoms with B and N atoms in the graphene structure, which caused the formation of a boron nitride composite with specified stoichiometry. BC
N nanotubes are more stable than other triple compounds due to the existence of a maximum number of B-N and C-C bonds. This paper focused on the nearest neighbor's tight-binding method to explore the dispersion relation of BC
N, which has no chemical bond between its carbon atoms. More specifically, the band dispersion of this specific structure and the effects of energy hopping in boron-carbon and nitrogen-carbon atoms on the band gap are studied. Besides, the band structure is achieved from density functional theory (DFT) using the generalized gradient approximations (GGA) approximation method. This calculation shows that this specific structure is semimetal, and the band gap energy is 0.167 ev. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1996-1944 1996-1944 |
DOI: | 10.3390/ma13051026 |