Control of arachidonic acid accumulation in bone marrow-derived macrophages by acyltransferases

The turnover of phospholipid fatty acid moieties of bone marrow-derived macrophages was analyzed by separate determination of degrading and acylating activities. Acylating activities were followed in intact cells by incubation with excess arachidonic acid and degradation of phospholipids was followe...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of biological chemistry Vol. 256; no. 8; pp. 3690 - 3697
Main Authors Kröner, E E, Peskar, B A, Fischer, H, Ferber, E
Format Journal Article
LanguageEnglish
Published United States American Society for Biochemistry and Molecular Biology 25.04.1981
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The turnover of phospholipid fatty acid moieties of bone marrow-derived macrophages was analyzed by separate determination of degrading and acylating activities. Acylating activities were followed in intact cells by incubation with excess arachidonic acid and degradation of phospholipids was followed in cells prelabeled with fatty acids. Significant phospholipase A2 activity was detectable only if the reutilization of liberated fatty acid was inhibited , e.g. by p-chloromercuribenzoate. It was of interest that the divalent cation ionophore A 23187 and various antiphlogistic drugs like indomethacin, diclofenac, and acetylsalicylic acid were found to inhibit the acylation reaction. These compounds led to increased levels of free arachidonic acid in stimulated, as well as in unstimulated cells. Increased activities of phospholipase A2 were achieved by treatment with the bivalent cation ionophore A 23187 and with zymosan. The effect of zymosan obtained from various sources was found to be exclusively due to contamination of tee zymosan particles with phospholipase A2 activity. Even when the cellular phospholipase activity was increased by the addition of exogenous phospholipase activity contained in the zymosan particles, degradation of cellular phospholipids was not measurable unless the reacylation was inhibited. These results suggest that in the cells studied, the level of free arachidonic acid is mainly controlled by the activity of the lysophosphatide acyltransferase.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0021-9258
1083-351X
DOI:10.1016/s0021-9258(19)69510-4