Recognition-mediated particle detection under microfluidic flow with waveguide-coupled 2D photonic crystals: towards integrated photonic virus detectors
Label-free biodetection schemes compatible with standard CMOS fabrication methods constitute an important goal, as these are enabling tools for the mass production of high-sensitivity biosensors. Two-dimensional slab photonic crystal (2D slab-PhC) sensors have been posited as ultrahigh-sensitivity d...
Saved in:
Published in | Lab on a chip Vol. 17; no. 9; pp. 1570 - 1577 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
02.05.2017
|
Subjects | |
Online Access | Get full text |
ISSN | 1473-0197 1473-0189 1473-0189 |
DOI | 10.1039/C7LC00221A |
Cover
Loading…
Summary: | Label-free biodetection schemes compatible with standard CMOS fabrication methods constitute an important goal, as these are enabling tools for the mass production of high-sensitivity biosensors. Two-dimensional slab photonic crystal (2D slab-PhC) sensors have been posited as ultrahigh-sensitivity detection components, but to date recognition-mediated detection of viruses or simulants under flow has not been demonstrated. We report the design and optimization of a new W1 waveguide-coupled 2D slab-PhC sensor, with a geometry well suited to virus detection. Proof of concept experiments with fluorescent latex particles verified that the sensor could respond to infiltration of a single particle, both in air and under an aqueous cover layer. Subsequent experiments with antibody-functionalized sensors and virus simulants confirmed the ability of the device to detect virus-sized particles under flow
via
a recognition-mediated process. This work sets the stage for incorporation of 2D slab-PhC sensors into fully integrated photonic sensor systems. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1473-0197 1473-0189 1473-0189 |
DOI: | 10.1039/C7LC00221A |