Drosophila melanogaster ferritin: cDNA encoding a light chain homologue, temporal and tissue specific expression of both subunit types

Drosophila melanogaster secreted ferritin like the cytosolic ferritins of other organisms is composed of two subunits, a heavy chain homologue (HCH) and a light chain homologue (LCH). We report the cloning of a cDNA encoding the ferritin LCH of this insect. As predicted from the gene sequence, it co...

Full description

Saved in:
Bibliographic Details
Published inInsect biochemistry and molecular biology Vol. 32; no. 3; pp. 295 - 302
Main Authors Georgieva, T., Dunkov, B.C., Dimov, S., Ralchev, K., Law, J.H.
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.03.2002
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Drosophila melanogaster secreted ferritin like the cytosolic ferritins of other organisms is composed of two subunits, a heavy chain homologue (HCH) and a light chain homologue (LCH). We report the cloning of a cDNA encoding the ferritin LCH of this insect. As predicted from the gene sequence, it contains no iron responsive element (IRE). Northern blot analysis reveals two mRNAs that differ in length due to the choice of polyadenylation signals. Message levels vary through the life cycle of the fly and are markedly increased by high levels of dietary iron. The gut is the main site of increased message synthesis and iron preferentially increases the amount of shorter messages. Western blotting reveals that LCH is the predominant ferritin subunit in all life stages. The amount of LCH protein corresponds well with the message levels in control animals, while in iron-fed animals LCH does not increase proportionally with the message levels. In contrast, the amount of HCH is less than that would be predicted from message levels in control animals, but corresponds well in iron-fed animals. Ferritin is abundant in gut and hemolymph of larvae and adults and in ovaries of adult flies. At pupariation, ferritin becomes more abundant in hemolymph than in other tissues.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0965-1748
1879-0240
DOI:10.1016/S0965-1748(01)00090-X