Natural Language Statistical Features of LSTM-Generated Texts

Long short-term memory (LSTM) networks have recently shown remarkable performance in several tasks that are dealing with natural language generation, such as image captioning or poetry composition. Yet, only few works have analyzed text generated by LSTMs in order to quantitatively evaluate to which...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 30; no. 11; pp. 3326 - 3337
Main Authors Lippi, Marco, Montemurro, Marcelo A., Degli Esposti, Mirko, Cristadoro, Giampaolo
Format Journal Article
LanguageEnglish
Published United States IEEE 01.11.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Long short-term memory (LSTM) networks have recently shown remarkable performance in several tasks that are dealing with natural language generation, such as image captioning or poetry composition. Yet, only few works have analyzed text generated by LSTMs in order to quantitatively evaluate to which extent such artificial texts resemble those generated by humans. We compared the statistical structure of LSTM-generated language to that of written natural language, and to those produced by Markov models of various orders. In particular, we characterized the statistical structure of language by assessing word-frequency statistics, long-range correlations, and entropy measures. Our main finding is that while both LSTM- and Markov-generated texts can exhibit features similar to real ones in their word-frequency statistics and entropy measures, LSTM-texts are shown to reproduce long-range correlations at scales comparable to those found in natural language. Moreover, for LSTM networks, a temperature-like parameter controlling the generation process shows an optimal value-for which the produced texts are closest to real language-consistent across different statistical features investigated.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2162-237X
2162-2388
DOI:10.1109/TNNLS.2019.2890970