Self-Navigated Three-Dimensional Ultrashort Echo Time Technique for Motion-Corrected Skull MRI

Ultrashort echo time (UTE) MRI is capable of detecting signals from protons with very short T 2 relaxation times, and thus has potential for skull-selective imaging as a radiation-free alternative to computed tomography. However, relatively long scan times make the technique vulnerable to artifacts...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on medical imaging Vol. 39; no. 9; pp. 2869 - 2880
Main Authors Lee, Hyunyeol, Zhao, Xia, Song, Hee Kwon, Wehrli, Felix W.
Format Journal Article
LanguageEnglish
Published United States IEEE 01.09.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Ultrashort echo time (UTE) MRI is capable of detecting signals from protons with very short T 2 relaxation times, and thus has potential for skull-selective imaging as a radiation-free alternative to computed tomography. However, relatively long scan times make the technique vulnerable to artifacts from involuntary subject motion. Here, we developed a self-navigated, three-dimensional (3D) UTE pulse sequence, which builds on dual-RF, dual-echo UTE imaging, and a retrospective motion correction scheme for motion-resistant skull MRI. Full echo signals in the second readout serve as a self-navigator that yields a time-course of center of mass, allowing for adaptive determination of motion states. Furthermore, golden-means based k-space trajectory was employed to achieve a quasi-uniform distribution of sampling views on a spherical k-space surface for any subset of the entire data collected, thereby allowing reconstruction of low-resolution images pertaining to each motion state for subsequent estimation of rigid-motion parameters. Finally, the extracted trajectory of the head was used to make the whole k-space datasets motion-consistent, leading to motion-corrected, high-resolution images. Additionally, we posit that hardware-related k-space trajectory errors, if uncorrected, result in obscured bone contrast. Thus, a calibration scan was performed once to measure k-space encoding locations, subsequently used during image reconstruction of actual imaging data. In vivo studies were performed to evaluate the effectiveness of the proposed correction schemes in combination with approaches to accelerated bone-selective imaging. Results illustrating effective removal of motion artifacts and clear depiction of skull bone voxels suggest that the proposed method is robust to intermittent head motions during scanning.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0278-0062
1558-254X
1558-254X
DOI:10.1109/TMI.2020.2978405