Corrosion Behavior of AISI 316L Stainless Steel Used as Inner Lining of Bimetallic Pipe in a Seawater Environment

Seawater leakage commonly leads to corrosion in the inner lining of submarine bimetallic pipes, with significant financial implications for the offshore oil and gas production industry. This study aims to improve understanding of the performance of bimetallic pipes by investigating the corrosion beh...

Full description

Saved in:
Bibliographic Details
Published inMaterials Vol. 14; no. 6; p. 1539
Main Authors Li, Daquan, Liu, Qingjian, Wang, Wenlong, Jin, Lei, Xiao, Huaping
Format Journal Article
LanguageEnglish
Published Switzerland MDPI 21.03.2021
MDPI AG
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Seawater leakage commonly leads to corrosion in the inner lining of submarine bimetallic pipes, with significant financial implications for the offshore oil and gas production industry. This study aims to improve understanding of the performance of bimetallic pipes by investigating the corrosion behaviors of mechanically bonded 316L stainless steel. Immersion experiments were conducted in a seawater environment, under both atmospheric conditions and high temperature and high pressure conditions, and corroded surfaces were examined using scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) to reveal micromorphology and elementary compositions. The results demonstrated that the corrosion rates of the bonded 316L specimen were between 5% and 20% higher than those of specimens without bonding under atmospheric conditions. This is attributed to the stress cracking that occurs during corrosion. Under high temperature and high pressure conditions, the corrosion rates were remarkably increased (91% to 135%) and the corrosion process took longer to reach equilibrium. This may be attributed, firstly, to the products becoming increasingly porous and weak, and also to the fluid stress caused by stirring in these experiments to simulate seawater movement.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1996-1944
1996-1944
DOI:10.3390/ma14061539