Jointly Learning Heterogeneous Features for RGB-D Activity Recognition

In this paper, we focus on heterogeneous features learning for RGB-D activity recognition. We find that features from different channels (RGB, depth) could share some similar hidden structures, and then propose a joint learning model to simultaneously explore the shared and feature-specific componen...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on pattern analysis and machine intelligence Vol. 39; no. 11; pp. 2186 - 2200
Main Authors Hu, Jian-Fang, Zheng, Wei-Shi, Lai, Jianhuang, Zhang, Jianguo
Format Journal Article
LanguageEnglish
Published United States IEEE 01.11.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, we focus on heterogeneous features learning for RGB-D activity recognition. We find that features from different channels (RGB, depth) could share some similar hidden structures, and then propose a joint learning model to simultaneously explore the shared and feature-specific components as an instance of heterogeneous multi-task learning. The proposed model formed in a unified framework is capable of: 1) jointly mining a set of subspaces with the same dimensionality to exploit latent shared features across different feature channels, 2) meanwhile, quantifying the shared and feature-specific components of features in the subspaces, and 3) transferring feature-specific intermediate transforms (i-transforms) for learning fusion of heterogeneous features across datasets. To efficiently train the joint model, a three-step iterative optimization algorithm is proposed, followed by a simple inference model. Extensive experimental results on four activity datasets have demonstrated the efficacy of the proposed method. Anew RGB-D activity dataset focusing on human-object interaction is further contributed, which presents more challenges for RGB-D activity benchmarking.
AbstractList In this paper, we focus on heterogeneous features learning for RGB-D activity recognition. We find that features from different channels (RGB, depth) could share some similar hidden structures, and then propose a joint learning model to simultaneously explore the shared and feature-specific components as an instance of heterogeneous multi-task learning. The proposed model formed in a unified framework is capable of: 1) jointly mining a set of subspaces with the same dimensionality to exploit latent shared features across different feature channels, 2) meanwhile, quantifying the shared and feature-specific components of features in the subspaces, and 3) transferring feature-specific intermediate transforms (i-transforms) for learning fusion of heterogeneous features across datasets. To efficiently train the joint model, a three-step iterative optimization algorithm is proposed, followed by a simple inference model. Extensive experimental results on four activity datasets have demonstrated the efficacy of the proposed method. A new RGB-D activity dataset focusing on human-object interaction is further contributed, which presents more challenges for RGB-D activity benchmarking.
In this paper, we focus on heterogeneous features learning for RGB-D activity recognition. We find that features from different channels (RGB, depth) could share some similar hidden structures, and then propose a joint learning model to simultaneously explore the shared and feature-specific components as an instance of heterogeneous multi-task learning. The proposed model formed in a unified framework is capable of: 1) jointly mining a set of subspaces with the same dimensionality to exploit latent shared features across different feature channels, 2) meanwhile, quantifying the shared and feature-specific components of features in the subspaces, and 3) transferring feature-specific intermediate transforms (i-transforms) for learning fusion of heterogeneous features across datasets. To efficiently train the joint model, a three-step iterative optimization algorithm is proposed, followed by a simple inference model. Extensive experimental results on four activity datasets have demonstrated the efficacy of the proposed method. Anew RGB-D activity dataset focusing on human-object interaction is further contributed, which presents more challenges for RGB-D activity benchmarking.
Author Jianguo Zhang
Jianhuang Lai
Wei-Shi Zheng
Jian-Fang Hu
Author_xml – sequence: 1
  givenname: Jian-Fang
  surname: Hu
  fullname: Hu, Jian-Fang
– sequence: 2
  givenname: Wei-Shi
  surname: Zheng
  fullname: Zheng, Wei-Shi
– sequence: 3
  givenname: Jianhuang
  surname: Lai
  fullname: Lai, Jianhuang
– sequence: 4
  givenname: Jianguo
  surname: Zhang
  fullname: Zhang, Jianguo
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28026749$$D View this record in MEDLINE/PubMed
BookMark eNpdkE1LAzEURYMoWqt_QEEG3LiZms9JsqzVVqWiiK7DTOZNibSJJjNC_72jrS5cvcU793I5h2jXBw8InRA8IgTry5en8cPdiGJSjGjBMdV0Bw2IZjpnguldNOg_NFeKqgN0mNIbxoQLzPbRAVWYFpLrAZreB-fb5TqbQxm984vsFlqIYQEeQpeyKZRtFyFlTYjZ8-wqv87GtnWfrl1nz2DDwrvWBX-E9ppymeB4e4fodXrzMrnN54-zu8l4nlvOeZvTmlSKFSBVVTNegyws5ZIxapUQhSyJlpWuSK1KrbSQXFqrKCglGkH69Q0bootN73sMHx2k1qxcsrBclj9zDVGCMa6pZj16_g99C130_TpDiezn4EKKnqIbysaQUoTGvEe3KuPaEGy-LZsfy-bbstla7kNn2-quWkH9F_nV2gOnG8ABwN9bSsWlUuwLxAOAXA
CODEN ITPIDJ
CitedBy_id crossref_primary_10_1109_ACCESS_2019_2940281
crossref_primary_10_1109_TCSVT_2021_3076165
crossref_primary_10_1007_s11042_022_11919_y
crossref_primary_10_3390_s19020423
crossref_primary_10_1016_j_fsidi_2019_200901
crossref_primary_10_1016_j_simpa_2022_100305
crossref_primary_10_1007_s11042_019_08576_z
crossref_primary_10_1007_s11263_021_01467_7
crossref_primary_10_1016_j_neucom_2020_12_020
crossref_primary_10_1145_3428068
crossref_primary_10_1016_j_patcog_2024_110536
crossref_primary_10_1109_ACCESS_2021_3101716
crossref_primary_10_1109_TIP_2019_2918725
crossref_primary_10_1007_s11042_018_6875_7
crossref_primary_10_1016_j_eswa_2022_116566
crossref_primary_10_3390_sym14081547
crossref_primary_10_1109_TCSVT_2020_2965574
crossref_primary_10_1145_3491228
crossref_primary_10_1016_j_patcog_2020_107807
crossref_primary_10_1109_ACCESS_2020_2992740
crossref_primary_10_1109_TCDS_2021_3126637
crossref_primary_10_1038_s41597_022_01843_z
crossref_primary_10_1109_TMM_2019_2897902
crossref_primary_10_1111_coin_12207
crossref_primary_10_1371_journal_pone_0201728
crossref_primary_10_3390_electronics12071549
crossref_primary_10_1016_j_eswa_2023_123061
crossref_primary_10_1109_TCYB_2021_3085489
crossref_primary_10_1016_j_cviu_2023_103764
crossref_primary_10_1109_TCDS_2021_3108136
crossref_primary_10_1016_j_patcog_2021_108043
crossref_primary_10_1109_TCSVT_2018_2875441
crossref_primary_10_1117_1_JRS_12_015023
crossref_primary_10_1007_s11063_023_11203_6
crossref_primary_10_1117_1_JEI_28_2_023004
crossref_primary_10_1109_TIP_2021_3104182
crossref_primary_10_1109_TCSVT_2020_2975845
crossref_primary_10_1109_TCYB_2020_3028931
crossref_primary_10_1007_s10844_021_00648_7
crossref_primary_10_1049_ell2_12597
crossref_primary_10_1109_ACCESS_2024_3376441
crossref_primary_10_1109_TMM_2020_2990082
crossref_primary_10_1049_iet_cvi_2018_5020
crossref_primary_10_3390_electronics9111888
crossref_primary_10_3390_s20174673
crossref_primary_10_3390_s19081932
crossref_primary_10_1145_3365212
crossref_primary_10_1007_s00138_022_01328_4
crossref_primary_10_1109_TPAMI_2018_2863279
crossref_primary_10_1109_JBHI_2022_3179014
crossref_primary_10_1109_TPAMI_2019_2916873
crossref_primary_10_3390_rs14061492
crossref_primary_10_1016_j_neucom_2022_10_084
crossref_primary_10_1016_j_dib_2022_108420
crossref_primary_10_1016_j_patcog_2018_07_001
crossref_primary_10_1049_el_2020_2148
crossref_primary_10_1109_ACCESS_2023_3260403
crossref_primary_10_1016_j_neucom_2021_09_034
crossref_primary_10_1109_TPAMI_2020_3032738
crossref_primary_10_1109_LSP_2021_3128379
crossref_primary_10_1007_s10462_021_10107_y
crossref_primary_10_1145_3657296
crossref_primary_10_1016_j_eswa_2024_123145
crossref_primary_10_1016_j_patcog_2023_110188
crossref_primary_10_1016_j_cviu_2021_103348
crossref_primary_10_3389_frobt_2023_1028329
crossref_primary_10_1002_ima_23110
crossref_primary_10_1016_j_cviu_2022_103489
crossref_primary_10_1016_j_jvcir_2019_02_013
crossref_primary_10_1117_1_JEI_27_4_043044
crossref_primary_10_1016_j_simpa_2022_100278
crossref_primary_10_11834_jig_230046
crossref_primary_10_1109_ACCESS_2019_2932101
crossref_primary_10_1109_ACCESS_2020_2978548
crossref_primary_10_1109_TIP_2017_2751145
crossref_primary_10_1109_TPAMI_2019_2898954
crossref_primary_10_32604_cmc_2022_024422
crossref_primary_10_1109_TGRS_2020_3021140
crossref_primary_10_1016_j_neucom_2018_05_042
Cites_doi 10.1109/ISCCSP.2014.6877819
10.1145/1273496.1273499
10.1145/2370216.2370248
10.1109/ICCV.2013.281
10.1109/TKDE.2009.191
10.1177/0278364913478446
10.1109/TPAMI.2012.189
10.1109/TPAMI.2012.67
10.1016/j.imavis.2014.04.005
10.1109/ICCV.2013.342
10.1109/CVPR.2011.5995407
10.1016/j.jvcir.2013.04.007
10.1109/ICCV.2013.227
10.1109/CVPR.2015.7298708
10.1007/s10107-012-0584-1
10.1109/CVPR.2013.98
10.1007/978-3-319-46448-0_17
10.1109/TPAMI.2013.198
10.1109/CVPR.2015.7299172
10.1109/CVPR.2013.365
10.1007/978-3-642-33709-3_13
10.1109/TCSVT.2015.2397200
10.1109/CVPR.2014.108
10.1109/ICCV.2015.134
10.1109/TPAMI.2015.2491925
10.1109/CVPR.2014.109
10.1109/CVPRW.2013.78
10.1145/2398356.2398381
10.1007/978-3-642-33765-9_13
10.1109/CVPRW.2010.5543273
10.1109/ICCVW.2013.19
10.1109/ICCV.2009.5459154
10.1109/ICCV.2013.406
10.1109/CVPR.2014.104
10.1109/CVPR.2014.83
10.1016/j.patcog.2012.04.024
10.1109/CVPRW.2012.6239233
10.1109/TPAMI.2013.167
10.1109/TIP.2014.2365699
10.1109/TPAMI.2015.2453984
10.1007/978-3-642-33709-3_62
10.1109/TPAMI.2011.253
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
DBID 97E
RIA
RIE
NPM
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TPAMI.2016.2640292
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL)
PubMed
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

Technology Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library Online
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1939-3539
2160-9292
EndPage 2200
ExternalDocumentID 10_1109_TPAMI_2016_2640292
28026749
7784788
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Guangdong Program for Support of Top-notch Young Professionals
  grantid: 2014TQ01X779
– fundername: Guangdong Science and Technology Planning Project
  grantid: 2016A010102012
– fundername: Guangdong Natural Science Funds for Distinguished Young Scholar
  grantid: S2013050014265
– fundername: National Key Research and Development Program of China
  grantid: 2016YFB1001002; 2016YFB1001003
– fundername: NSFC
  grantid: 61522115; 61573387; 61661130157; 61628212
  funderid: 10.13039/501100001809
GroupedDBID ---
-DZ
-~X
.DC
0R~
29I
4.4
53G
5GY
6IK
97E
AAJGR
AASAJ
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AKJIK
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIC
RIE
RIG
RNS
RXW
TAE
TN5
UHB
~02
5VS
9M8
AAYOK
ABFSI
ADRHT
AETIX
AI.
AIBXA
ALLEH
F20
FA8
H~9
IBMZZ
ICLAB
IFJZH
NPM
RNI
RZB
VH1
XJT
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c444t-2d1b836e78bd34de76c247332c85567a197b9b1d8a9895747cc82e885f51001f3
IEDL.DBID RIE
ISSN 0162-8828
IngestDate Wed Jul 24 14:31:12 EDT 2024
Thu Oct 10 20:53:36 EDT 2024
Fri Aug 23 01:56:02 EDT 2024
Sat Sep 28 08:37:30 EDT 2024
Wed Jun 26 19:28:57 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c444t-2d1b836e78bd34de76c247332c85567a197b9b1d8a9895747cc82e885f51001f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Hu_Jointly_Learning_Heterogeneous_2015_CVPR_paper.pdf
PMID 28026749
PQID 2174440675
PQPubID 85458
PageCount 15
ParticipantIDs pubmed_primary_28026749
proquest_journals_2174440675
crossref_primary_10_1109_TPAMI_2016_2640292
proquest_miscellaneous_1853349293
ieee_primary_7784788
PublicationCentury 2000
PublicationDate 2017-Nov.-1
2017-11-00
2017-11-1
20171101
PublicationDateYYYYMMDD 2017-11-01
PublicationDate_xml – month: 11
  year: 2017
  text: 2017-Nov.-1
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on pattern analysis and machine intelligence
PublicationTitleAbbrev TPAMI
PublicationTitleAlternate IEEE Trans Pattern Anal Mach Intell
PublicationYear 2017
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref56
ref12
ref59
ref15
ref58
ref14
ref52
ref11
ref10
hussein (ref13) 2013
ref17
ref16
ref19
ref18
zhao (ref55) 2012
ref51
ref45
ref48
yang (ref46) 2009
ref42
ref41
ref44
ref43
ref49
lv (ref23) 2006
ref8
sung (ref33) 2011; 64
ref3
ref6
ref5
liu (ref20) 2013
du (ref7) 2015
ref35
ref37
ref36
ref31
song (ref32) 2012
ref30
ref1
ref39
ref38
zhang (ref54) 2010
müller (ref25) 2006
ando (ref2) 2005; 6
cao (ref4) 2009
ref24
ref26
yao (ref50) 2012; 34
zhang (ref53) 2011
ref22
ref21
wang (ref40) 2012
ref28
yang (ref47) 2012
ref27
ref29
han (ref9) 2012
vemulapalli (ref34) 2013
References_xml – ident: ref30
  doi: 10.1109/ISCCSP.2014.6877819
– ident: ref1
  doi: 10.1145/1273496.1273499
– ident: ref16
  doi: 10.1145/2370216.2370248
– start-page: 574
  year: 2011
  ident: ref53
  article-title: Multi-task learning in heterogeneous feature spaces
  publication-title: Proc Conf Artif Intell
  contributor:
    fullname: zhang
– start-page: 1370
  year: 2012
  ident: ref40
  article-title: Action recognition by exploring data distribution and feature correlation
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit
  contributor:
    fullname: wang
– start-page: 733
  year: 2010
  ident: ref54
  article-title: A convex formulation for learning task relationships in multi-task learning
  publication-title: Proc Sixth Conf Uncertainty in Artificial Intelligence
  contributor:
    fullname: zhang
– ident: ref57
  doi: 10.1109/ICCV.2013.281
– ident: ref29
  doi: 10.1109/TKDE.2009.191
– start-page: 1493
  year: 2013
  ident: ref20
  article-title: Learning discriminative representations from RGB-D video data
  publication-title: Proc Int Joint Conf Artif Intell
  contributor:
    fullname: liu
– ident: ref15
  doi: 10.1177/0278364913478446
– ident: ref6
  doi: 10.1109/TPAMI.2012.189
– volume: 34
  start-page: 1691
  year: 2012
  ident: ref50
  article-title: Recognizing human-object interactions in still images by modeling the mutual context of objects and human poses
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2012.67
  contributor:
    fullname: yao
– ident: ref59
  doi: 10.1016/j.imavis.2014.04.005
– start-page: 2151
  year: 2009
  ident: ref46
  article-title: Heterogeneous multitask learning with joint sparsity constraints
  publication-title: Proc Advances Neural Inf Process Syst
  contributor:
    fullname: yang
– ident: ref52
  doi: 10.1109/ICCV.2013.342
– ident: ref36
  doi: 10.1109/CVPR.2011.5995407
– ident: ref27
  doi: 10.1016/j.jvcir.2013.04.007
– ident: ref22
  doi: 10.1109/ICCV.2013.227
– start-page: 359
  year: 2006
  ident: ref23
  article-title: Recognition and segmentation of 3D human action using hmm and multi-class adaboost
  publication-title: Proc Eur Conf Comput Vis
  contributor:
    fullname: lv
– ident: ref14
  doi: 10.1109/CVPR.2015.7298708
– ident: ref42
  doi: 10.1007/s10107-012-0584-1
– ident: ref28
  doi: 10.1109/CVPR.2013.98
– start-page: 14
  year: 2012
  ident: ref47
  article-title: Eigenjoints-based action recognition using naive-Bayes-nearest-neighbor
  publication-title: Proc IEEE Int Conf Comput Vis Pattern Recognit Workshops
  contributor:
    fullname: yang
– ident: ref12
  doi: 10.1007/978-3-319-46448-0_17
– ident: ref39
  doi: 10.1109/TPAMI.2013.198
– ident: ref11
  doi: 10.1109/CVPR.2015.7299172
– ident: ref43
  doi: 10.1109/CVPR.2013.365
– volume: 6
  start-page: 1817
  year: 2005
  ident: ref2
  article-title: A framework for learning predictive structures from multiple tasks and unlabeled data
  publication-title: J Mach Learn Res
  contributor:
    fullname: ando
– ident: ref26
  doi: 10.1007/978-3-642-33709-3_13
– start-page: 1463
  year: 2012
  ident: ref9
  article-title: Cross-domain multitask learning with latent probit models
  publication-title: Proc 29th Int Conf Mach Learn
  contributor:
    fullname: han
– start-page: 2120
  year: 2012
  ident: ref32
  article-title: Multi-view latent variable discriminative models for action recognition
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit
  contributor:
    fullname: song
– ident: ref10
  doi: 10.1109/TCSVT.2015.2397200
– start-page: 2466
  year: 2013
  ident: ref13
  article-title: Human action recognition using a temporal hierarchy of covariance descriptors on 3d joint locations
  publication-title: Proc Int Joint Conf Artif Intell
  contributor:
    fullname: hussein
– ident: ref48
  doi: 10.1109/CVPR.2014.108
– ident: ref35
  doi: 10.1109/ICCV.2015.134
– start-page: 1110
  year: 2015
  ident: ref7
  article-title: Hierarchical recurrent neural network for skeleton based action recognition
  publication-title: Proc IEEE Int Conf Comput Vis Pattern Recognit
  contributor:
    fullname: du
– ident: ref51
  doi: 10.1109/TPAMI.2015.2491925
– volume: 64
  start-page: 47
  year: 2011
  ident: ref33
  article-title: Human activity detection from RGBD images
  publication-title: Conference on Plan Activity and Intent Recognition
  contributor:
    fullname: sung
– ident: ref19
  doi: 10.1109/CVPR.2014.109
– ident: ref58
  doi: 10.1109/CVPRW.2013.78
– ident: ref31
  doi: 10.1145/2398356.2398381
– ident: ref49
  doi: 10.1007/978-3-642-33765-9_13
– start-page: 1095
  year: 2009
  ident: ref4
  article-title: Heterogeneous feature machines for visual recognition
  publication-title: Proc IEEE Int Conf Comput Vis
  contributor:
    fullname: cao
– ident: ref18
  doi: 10.1109/CVPRW.2010.5543273
– ident: ref5
  doi: 10.1109/ICCVW.2013.19
– ident: ref24
  doi: 10.1109/ICCV.2009.5459154
– ident: ref41
  doi: 10.1109/ICCV.2013.406
– ident: ref21
  doi: 10.1109/CVPR.2014.104
– start-page: 1
  year: 2012
  ident: ref55
  article-title: Combing rgb and depth map features for human activity recognition
  publication-title: Proc IEEE Asia-Pacific Signal Inf Process Assoc Annu Summit Conf
  contributor:
    fullname: zhao
– ident: ref3
  doi: 10.1109/CVPR.2014.83
– ident: ref37
  doi: 10.1016/j.patcog.2012.04.024
– start-page: 588
  year: 2013
  ident: ref34
  article-title: Human action recognition by representing 3D skeletons as points in a lie group
  publication-title: Proc IEEE Int Conf Comput Vis Pattern Recognit
  contributor:
    fullname: vemulapalli
– ident: ref44
  doi: 10.1109/CVPRW.2012.6239233
– ident: ref17
  doi: 10.1109/TPAMI.2013.167
– start-page: 137
  year: 2006
  ident: ref25
  article-title: Motion templates for automatic classification and retrieval of motion capture data
  publication-title: Proc ACM SIGGRAPH/Eurographics Symp Comput Animation
  contributor:
    fullname: müller
– ident: ref45
  doi: 10.1109/TIP.2014.2365699
– ident: ref56
  doi: 10.1109/TPAMI.2015.2453984
– ident: ref38
  doi: 10.1007/978-3-642-33709-3_62
– ident: ref8
  doi: 10.1109/TPAMI.2011.253
SSID ssj0014503
Score 2.625519
Snippet In this paper, we focus on heterogeneous features learning for RGB-D activity recognition. We find that features from different channels (RGB, depth) could...
SourceID proquest
crossref
pubmed
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 2186
SubjectTerms action recognition
Activity recognition
Channels
Datasets
Feature extraction
Feature recognition
Heterogeneous features learning
Image color analysis
Iterative methods
Learning
RGB-D activity recognition
Skeleton
Subspaces
Three-dimensional displays
Transforms
Visualization
Title Jointly Learning Heterogeneous Features for RGB-D Activity Recognition
URI https://ieeexplore.ieee.org/document/7784788
https://www.ncbi.nlm.nih.gov/pubmed/28026749
https://www.proquest.com/docview/2174440675
https://search.proquest.com/docview/1853349293
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB7Ukx5c39YXEbxp122aNslxfayrsCKi4K2kaVZEaUXbg_56M-kDEQVvW7b0kZkh39eZ-QbggOmIU8WEpSUU04yB9lPBkLVmQRBnqKON_c6T63h8z64eoocZOOp6YYwxrvjM9PGny-Vnha7wU9kx5wLV3mdhlktR92p1GQMWuSnIFsHYCLc0om2QGcjju5vh5BKruOK-3f4HVOIIGypw9hJKaH7bj9yAlb-xpttzRj2YtE9bl5o896sy7evPH0KO_32dJVhswCcZ1t6yDDMmX4FeO9iBNHG-AgvfVApXYXRVPOXlywdptFgfyRhraArreqao3gmiyMqydmLxL7m9OPHPyFDXQynIbVufVORrcD86vzsd-834BV8zxkqfZkEqwthwkWYhywyPNWU8DKkWURRzFUieyjTIhJJCRpaWaC2oESKaRijsNA3XYS4vcrMJxEy5ypRlglpxlppQKWmPphaqDCyc0cKDw9YIyWutspE4djKQibNegtZLGut5sIqL2Z3ZrKMHO63dkiYQ3xNkXIwhLfJgv_vbhhDmRZRbpgQhC4o0ytCDjdre3bVbN9n6_Z7bME9xn3fNiTswV75VZteilDLdc-75BaZj3ys
link.rule.ids 315,782,786,798,27931,27932,54765
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6V9gA90BctaUsxEjfIduPYsX3cli7bx1ao2kq9WY7jRQiUIJoc4NfX4zxUIZB622ijPDwz8vdlZr4BeM8sF9Qw6WkJxTRjYuNcMmStRZJkBepoY7_z_Dqb3bKLO363Ah-HXhjnXCg-cyP8GXL5RWUb_FR2LIREtfdnsMaZyHjbrTXkDBgPc5A9hvEx7olE3yIzVseLL5P5OdZxZSMPAMZU4RAbKnH6EopoPtqRwoiV_6PNsOtMN2DeP29bbPJ91NT5yP75S8rxqS-0CS87-Ekmrb9swYort2GjH-1AukjfhvVHOoU7ML2ovpX1j9-kU2P9SmZYRVN553NVc08QRzaetxOPgMnN55P4E5nYdiwFuekrlKryFdxOzxans7gbwBBbxlgd0yLJZZo5IfMiZYUTmaVMpCm1kvNMmESJXOVJIY2SintiYq2kTkq-5CjttEx3YbWsSvcaiFsKUxjPBa0RLHepMcofLT1YGXtAY2UEH3oj6J-tzoYO_GSsdLCeRuvpznoR7OBiDmd26xjBYW833YXivUbOxRgSowjeDX_7IMLMiAnLpBG0oEyjSiPYa-09XLt3k_1_3_MtPJ8t5lf66vz68gBeUNz1Q6viIazWvxr3xmOWOj8KrvoAhpTieg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Jointly+Learning+Heterogeneous+Features+for+RGB-D+Activity+Recognition&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Hu%2C+Jian-Fang&rft.au=Zheng%2C+Wei-Shi&rft.au=Lai%2C+Jianhuang&rft.au=Zhang%2C+Jianguo&rft.date=2017-11-01&rft.issn=0162-8828&rft.eissn=2160-9292&rft.volume=39&rft.issue=11&rft.spage=2186&rft.epage=2200&rft_id=info:doi/10.1109%2FTPAMI.2016.2640292&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TPAMI_2016_2640292
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon