Jointly Learning Heterogeneous Features for RGB-D Activity Recognition
In this paper, we focus on heterogeneous features learning for RGB-D activity recognition. We find that features from different channels (RGB, depth) could share some similar hidden structures, and then propose a joint learning model to simultaneously explore the shared and feature-specific componen...
Saved in:
Published in | IEEE transactions on pattern analysis and machine intelligence Vol. 39; no. 11; pp. 2186 - 2200 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.11.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, we focus on heterogeneous features learning for RGB-D activity recognition. We find that features from different channels (RGB, depth) could share some similar hidden structures, and then propose a joint learning model to simultaneously explore the shared and feature-specific components as an instance of heterogeneous multi-task learning. The proposed model formed in a unified framework is capable of: 1) jointly mining a set of subspaces with the same dimensionality to exploit latent shared features across different feature channels, 2) meanwhile, quantifying the shared and feature-specific components of features in the subspaces, and 3) transferring feature-specific intermediate transforms (i-transforms) for learning fusion of heterogeneous features across datasets. To efficiently train the joint model, a three-step iterative optimization algorithm is proposed, followed by a simple inference model. Extensive experimental results on four activity datasets have demonstrated the efficacy of the proposed method. Anew RGB-D activity dataset focusing on human-object interaction is further contributed, which presents more challenges for RGB-D activity benchmarking. |
---|---|
AbstractList | In this paper, we focus on heterogeneous features learning for RGB-D activity recognition. We find that features from different channels (RGB, depth) could share some similar hidden structures, and then propose a joint learning model to simultaneously explore the shared and feature-specific components as an instance of heterogeneous multi-task learning. The proposed model formed in a unified framework is capable of: 1) jointly mining a set of subspaces with the same dimensionality to exploit latent shared features across different feature channels, 2) meanwhile, quantifying the shared and feature-specific components of features in the subspaces, and 3) transferring feature-specific intermediate transforms (i-transforms) for learning fusion of heterogeneous features across datasets. To efficiently train the joint model, a three-step iterative optimization algorithm is proposed, followed by a simple inference model. Extensive experimental results on four activity datasets have demonstrated the efficacy of the proposed method. A new RGB-D activity dataset focusing on human-object interaction is further contributed, which presents more challenges for RGB-D activity benchmarking. In this paper, we focus on heterogeneous features learning for RGB-D activity recognition. We find that features from different channels (RGB, depth) could share some similar hidden structures, and then propose a joint learning model to simultaneously explore the shared and feature-specific components as an instance of heterogeneous multi-task learning. The proposed model formed in a unified framework is capable of: 1) jointly mining a set of subspaces with the same dimensionality to exploit latent shared features across different feature channels, 2) meanwhile, quantifying the shared and feature-specific components of features in the subspaces, and 3) transferring feature-specific intermediate transforms (i-transforms) for learning fusion of heterogeneous features across datasets. To efficiently train the joint model, a three-step iterative optimization algorithm is proposed, followed by a simple inference model. Extensive experimental results on four activity datasets have demonstrated the efficacy of the proposed method. Anew RGB-D activity dataset focusing on human-object interaction is further contributed, which presents more challenges for RGB-D activity benchmarking. |
Author | Jianguo Zhang Jianhuang Lai Wei-Shi Zheng Jian-Fang Hu |
Author_xml | – sequence: 1 givenname: Jian-Fang surname: Hu fullname: Hu, Jian-Fang – sequence: 2 givenname: Wei-Shi surname: Zheng fullname: Zheng, Wei-Shi – sequence: 3 givenname: Jianhuang surname: Lai fullname: Lai, Jianhuang – sequence: 4 givenname: Jianguo surname: Zhang fullname: Zhang, Jianguo |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28026749$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkE1LAzEURYMoWqt_QEEG3LiZms9JsqzVVqWiiK7DTOZNibSJJjNC_72jrS5cvcU793I5h2jXBw8InRA8IgTry5en8cPdiGJSjGjBMdV0Bw2IZjpnguldNOg_NFeKqgN0mNIbxoQLzPbRAVWYFpLrAZreB-fb5TqbQxm984vsFlqIYQEeQpeyKZRtFyFlTYjZ8-wqv87GtnWfrl1nz2DDwrvWBX-E9ppymeB4e4fodXrzMrnN54-zu8l4nlvOeZvTmlSKFSBVVTNegyws5ZIxapUQhSyJlpWuSK1KrbSQXFqrKCglGkH69Q0bootN73sMHx2k1qxcsrBclj9zDVGCMa6pZj16_g99C130_TpDiezn4EKKnqIbysaQUoTGvEe3KuPaEGy-LZsfy-bbstla7kNn2-quWkH9F_nV2gOnG8ABwN9bSsWlUuwLxAOAXA |
CODEN | ITPIDJ |
CitedBy_id | crossref_primary_10_1109_ACCESS_2019_2940281 crossref_primary_10_1109_TCSVT_2021_3076165 crossref_primary_10_1007_s11042_022_11919_y crossref_primary_10_3390_s19020423 crossref_primary_10_1016_j_fsidi_2019_200901 crossref_primary_10_1016_j_simpa_2022_100305 crossref_primary_10_1007_s11042_019_08576_z crossref_primary_10_1007_s11263_021_01467_7 crossref_primary_10_1016_j_neucom_2020_12_020 crossref_primary_10_1145_3428068 crossref_primary_10_1016_j_patcog_2024_110536 crossref_primary_10_1109_ACCESS_2021_3101716 crossref_primary_10_1109_TIP_2019_2918725 crossref_primary_10_1007_s11042_018_6875_7 crossref_primary_10_1016_j_eswa_2022_116566 crossref_primary_10_3390_sym14081547 crossref_primary_10_1109_TCSVT_2020_2965574 crossref_primary_10_1145_3491228 crossref_primary_10_1016_j_patcog_2020_107807 crossref_primary_10_1109_ACCESS_2020_2992740 crossref_primary_10_1109_TCDS_2021_3126637 crossref_primary_10_1038_s41597_022_01843_z crossref_primary_10_1109_TMM_2019_2897902 crossref_primary_10_1111_coin_12207 crossref_primary_10_1371_journal_pone_0201728 crossref_primary_10_3390_electronics12071549 crossref_primary_10_1016_j_eswa_2023_123061 crossref_primary_10_1109_TCYB_2021_3085489 crossref_primary_10_1016_j_cviu_2023_103764 crossref_primary_10_1109_TCDS_2021_3108136 crossref_primary_10_1016_j_patcog_2021_108043 crossref_primary_10_1109_TCSVT_2018_2875441 crossref_primary_10_1117_1_JRS_12_015023 crossref_primary_10_1007_s11063_023_11203_6 crossref_primary_10_1117_1_JEI_28_2_023004 crossref_primary_10_1109_TIP_2021_3104182 crossref_primary_10_1109_TCSVT_2020_2975845 crossref_primary_10_1109_TCYB_2020_3028931 crossref_primary_10_1007_s10844_021_00648_7 crossref_primary_10_1049_ell2_12597 crossref_primary_10_1109_ACCESS_2024_3376441 crossref_primary_10_1109_TMM_2020_2990082 crossref_primary_10_1049_iet_cvi_2018_5020 crossref_primary_10_3390_electronics9111888 crossref_primary_10_3390_s20174673 crossref_primary_10_3390_s19081932 crossref_primary_10_1145_3365212 crossref_primary_10_1007_s00138_022_01328_4 crossref_primary_10_1109_TPAMI_2018_2863279 crossref_primary_10_1109_JBHI_2022_3179014 crossref_primary_10_1109_TPAMI_2019_2916873 crossref_primary_10_3390_rs14061492 crossref_primary_10_1016_j_neucom_2022_10_084 crossref_primary_10_1016_j_dib_2022_108420 crossref_primary_10_1016_j_patcog_2018_07_001 crossref_primary_10_1049_el_2020_2148 crossref_primary_10_1109_ACCESS_2023_3260403 crossref_primary_10_1016_j_neucom_2021_09_034 crossref_primary_10_1109_TPAMI_2020_3032738 crossref_primary_10_1109_LSP_2021_3128379 crossref_primary_10_1007_s10462_021_10107_y crossref_primary_10_1145_3657296 crossref_primary_10_1016_j_eswa_2024_123145 crossref_primary_10_1016_j_patcog_2023_110188 crossref_primary_10_1016_j_cviu_2021_103348 crossref_primary_10_3389_frobt_2023_1028329 crossref_primary_10_1002_ima_23110 crossref_primary_10_1016_j_cviu_2022_103489 crossref_primary_10_1016_j_jvcir_2019_02_013 crossref_primary_10_1117_1_JEI_27_4_043044 crossref_primary_10_1016_j_simpa_2022_100278 crossref_primary_10_11834_jig_230046 crossref_primary_10_1109_ACCESS_2019_2932101 crossref_primary_10_1109_ACCESS_2020_2978548 crossref_primary_10_1109_TIP_2017_2751145 crossref_primary_10_1109_TPAMI_2019_2898954 crossref_primary_10_32604_cmc_2022_024422 crossref_primary_10_1109_TGRS_2020_3021140 crossref_primary_10_1016_j_neucom_2018_05_042 |
Cites_doi | 10.1109/ISCCSP.2014.6877819 10.1145/1273496.1273499 10.1145/2370216.2370248 10.1109/ICCV.2013.281 10.1109/TKDE.2009.191 10.1177/0278364913478446 10.1109/TPAMI.2012.189 10.1109/TPAMI.2012.67 10.1016/j.imavis.2014.04.005 10.1109/ICCV.2013.342 10.1109/CVPR.2011.5995407 10.1016/j.jvcir.2013.04.007 10.1109/ICCV.2013.227 10.1109/CVPR.2015.7298708 10.1007/s10107-012-0584-1 10.1109/CVPR.2013.98 10.1007/978-3-319-46448-0_17 10.1109/TPAMI.2013.198 10.1109/CVPR.2015.7299172 10.1109/CVPR.2013.365 10.1007/978-3-642-33709-3_13 10.1109/TCSVT.2015.2397200 10.1109/CVPR.2014.108 10.1109/ICCV.2015.134 10.1109/TPAMI.2015.2491925 10.1109/CVPR.2014.109 10.1109/CVPRW.2013.78 10.1145/2398356.2398381 10.1007/978-3-642-33765-9_13 10.1109/CVPRW.2010.5543273 10.1109/ICCVW.2013.19 10.1109/ICCV.2009.5459154 10.1109/ICCV.2013.406 10.1109/CVPR.2014.104 10.1109/CVPR.2014.83 10.1016/j.patcog.2012.04.024 10.1109/CVPRW.2012.6239233 10.1109/TPAMI.2013.167 10.1109/TIP.2014.2365699 10.1109/TPAMI.2015.2453984 10.1007/978-3-642-33709-3_62 10.1109/TPAMI.2011.253 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017 |
DBID | 97E RIA RIE NPM AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
DOI | 10.1109/TPAMI.2016.2640292 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library (IEL) PubMed CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitle | PubMed CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic Technology Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library Online url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1939-3539 2160-9292 |
EndPage | 2200 |
ExternalDocumentID | 10_1109_TPAMI_2016_2640292 28026749 7784788 |
Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Guangdong Program for Support of Top-notch Young Professionals grantid: 2014TQ01X779 – fundername: Guangdong Science and Technology Planning Project grantid: 2016A010102012 – fundername: Guangdong Natural Science Funds for Distinguished Young Scholar grantid: S2013050014265 – fundername: National Key Research and Development Program of China grantid: 2016YFB1001002; 2016YFB1001003 – fundername: NSFC grantid: 61522115; 61573387; 61661130157; 61628212 funderid: 10.13039/501100001809 |
GroupedDBID | --- -DZ -~X .DC 0R~ 29I 4.4 53G 5GY 6IK 97E AAJGR AASAJ ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AKJIK ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ IEDLZ IFIPE IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIC RIE RIG RNS RXW TAE TN5 UHB ~02 5VS 9M8 AAYOK ABFSI ADRHT AETIX AI. AIBXA ALLEH F20 FA8 H~9 IBMZZ ICLAB IFJZH NPM RNI RZB VH1 XJT AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
ID | FETCH-LOGICAL-c444t-2d1b836e78bd34de76c247332c85567a197b9b1d8a9895747cc82e885f51001f3 |
IEDL.DBID | RIE |
ISSN | 0162-8828 |
IngestDate | Wed Jul 24 14:31:12 EDT 2024 Thu Oct 10 20:53:36 EDT 2024 Fri Aug 23 01:56:02 EDT 2024 Sat Sep 28 08:37:30 EDT 2024 Wed Jun 26 19:28:57 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c444t-2d1b836e78bd34de76c247332c85567a197b9b1d8a9895747cc82e885f51001f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Hu_Jointly_Learning_Heterogeneous_2015_CVPR_paper.pdf |
PMID | 28026749 |
PQID | 2174440675 |
PQPubID | 85458 |
PageCount | 15 |
ParticipantIDs | pubmed_primary_28026749 proquest_journals_2174440675 crossref_primary_10_1109_TPAMI_2016_2640292 proquest_miscellaneous_1853349293 ieee_primary_7784788 |
PublicationCentury | 2000 |
PublicationDate | 2017-Nov.-1 2017-11-00 2017-11-1 20171101 |
PublicationDateYYYYMMDD | 2017-11-01 |
PublicationDate_xml | – month: 11 year: 2017 text: 2017-Nov.-1 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on pattern analysis and machine intelligence |
PublicationTitleAbbrev | TPAMI |
PublicationTitleAlternate | IEEE Trans Pattern Anal Mach Intell |
PublicationYear | 2017 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref57 ref56 ref12 ref59 ref15 ref58 ref14 ref52 ref11 ref10 hussein (ref13) 2013 ref17 ref16 ref19 ref18 zhao (ref55) 2012 ref51 ref45 ref48 yang (ref46) 2009 ref42 ref41 ref44 ref43 ref49 lv (ref23) 2006 ref8 sung (ref33) 2011; 64 ref3 ref6 ref5 liu (ref20) 2013 du (ref7) 2015 ref35 ref37 ref36 ref31 song (ref32) 2012 ref30 ref1 ref39 ref38 zhang (ref54) 2010 müller (ref25) 2006 ando (ref2) 2005; 6 cao (ref4) 2009 ref24 ref26 yao (ref50) 2012; 34 zhang (ref53) 2011 ref22 ref21 wang (ref40) 2012 ref28 yang (ref47) 2012 ref27 ref29 han (ref9) 2012 vemulapalli (ref34) 2013 |
References_xml | – ident: ref30 doi: 10.1109/ISCCSP.2014.6877819 – ident: ref1 doi: 10.1145/1273496.1273499 – ident: ref16 doi: 10.1145/2370216.2370248 – start-page: 574 year: 2011 ident: ref53 article-title: Multi-task learning in heterogeneous feature spaces publication-title: Proc Conf Artif Intell contributor: fullname: zhang – start-page: 1370 year: 2012 ident: ref40 article-title: Action recognition by exploring data distribution and feature correlation publication-title: Proc IEEE Conf Comput Vis Pattern Recognit contributor: fullname: wang – start-page: 733 year: 2010 ident: ref54 article-title: A convex formulation for learning task relationships in multi-task learning publication-title: Proc Sixth Conf Uncertainty in Artificial Intelligence contributor: fullname: zhang – ident: ref57 doi: 10.1109/ICCV.2013.281 – ident: ref29 doi: 10.1109/TKDE.2009.191 – start-page: 1493 year: 2013 ident: ref20 article-title: Learning discriminative representations from RGB-D video data publication-title: Proc Int Joint Conf Artif Intell contributor: fullname: liu – ident: ref15 doi: 10.1177/0278364913478446 – ident: ref6 doi: 10.1109/TPAMI.2012.189 – volume: 34 start-page: 1691 year: 2012 ident: ref50 article-title: Recognizing human-object interactions in still images by modeling the mutual context of objects and human poses publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2012.67 contributor: fullname: yao – ident: ref59 doi: 10.1016/j.imavis.2014.04.005 – start-page: 2151 year: 2009 ident: ref46 article-title: Heterogeneous multitask learning with joint sparsity constraints publication-title: Proc Advances Neural Inf Process Syst contributor: fullname: yang – ident: ref52 doi: 10.1109/ICCV.2013.342 – ident: ref36 doi: 10.1109/CVPR.2011.5995407 – ident: ref27 doi: 10.1016/j.jvcir.2013.04.007 – ident: ref22 doi: 10.1109/ICCV.2013.227 – start-page: 359 year: 2006 ident: ref23 article-title: Recognition and segmentation of 3D human action using hmm and multi-class adaboost publication-title: Proc Eur Conf Comput Vis contributor: fullname: lv – ident: ref14 doi: 10.1109/CVPR.2015.7298708 – ident: ref42 doi: 10.1007/s10107-012-0584-1 – ident: ref28 doi: 10.1109/CVPR.2013.98 – start-page: 14 year: 2012 ident: ref47 article-title: Eigenjoints-based action recognition using naive-Bayes-nearest-neighbor publication-title: Proc IEEE Int Conf Comput Vis Pattern Recognit Workshops contributor: fullname: yang – ident: ref12 doi: 10.1007/978-3-319-46448-0_17 – ident: ref39 doi: 10.1109/TPAMI.2013.198 – ident: ref11 doi: 10.1109/CVPR.2015.7299172 – ident: ref43 doi: 10.1109/CVPR.2013.365 – volume: 6 start-page: 1817 year: 2005 ident: ref2 article-title: A framework for learning predictive structures from multiple tasks and unlabeled data publication-title: J Mach Learn Res contributor: fullname: ando – ident: ref26 doi: 10.1007/978-3-642-33709-3_13 – start-page: 1463 year: 2012 ident: ref9 article-title: Cross-domain multitask learning with latent probit models publication-title: Proc 29th Int Conf Mach Learn contributor: fullname: han – start-page: 2120 year: 2012 ident: ref32 article-title: Multi-view latent variable discriminative models for action recognition publication-title: Proc IEEE Conf Comput Vis Pattern Recognit contributor: fullname: song – ident: ref10 doi: 10.1109/TCSVT.2015.2397200 – start-page: 2466 year: 2013 ident: ref13 article-title: Human action recognition using a temporal hierarchy of covariance descriptors on 3d joint locations publication-title: Proc Int Joint Conf Artif Intell contributor: fullname: hussein – ident: ref48 doi: 10.1109/CVPR.2014.108 – ident: ref35 doi: 10.1109/ICCV.2015.134 – start-page: 1110 year: 2015 ident: ref7 article-title: Hierarchical recurrent neural network for skeleton based action recognition publication-title: Proc IEEE Int Conf Comput Vis Pattern Recognit contributor: fullname: du – ident: ref51 doi: 10.1109/TPAMI.2015.2491925 – volume: 64 start-page: 47 year: 2011 ident: ref33 article-title: Human activity detection from RGBD images publication-title: Conference on Plan Activity and Intent Recognition contributor: fullname: sung – ident: ref19 doi: 10.1109/CVPR.2014.109 – ident: ref58 doi: 10.1109/CVPRW.2013.78 – ident: ref31 doi: 10.1145/2398356.2398381 – ident: ref49 doi: 10.1007/978-3-642-33765-9_13 – start-page: 1095 year: 2009 ident: ref4 article-title: Heterogeneous feature machines for visual recognition publication-title: Proc IEEE Int Conf Comput Vis contributor: fullname: cao – ident: ref18 doi: 10.1109/CVPRW.2010.5543273 – ident: ref5 doi: 10.1109/ICCVW.2013.19 – ident: ref24 doi: 10.1109/ICCV.2009.5459154 – ident: ref41 doi: 10.1109/ICCV.2013.406 – ident: ref21 doi: 10.1109/CVPR.2014.104 – start-page: 1 year: 2012 ident: ref55 article-title: Combing rgb and depth map features for human activity recognition publication-title: Proc IEEE Asia-Pacific Signal Inf Process Assoc Annu Summit Conf contributor: fullname: zhao – ident: ref3 doi: 10.1109/CVPR.2014.83 – ident: ref37 doi: 10.1016/j.patcog.2012.04.024 – start-page: 588 year: 2013 ident: ref34 article-title: Human action recognition by representing 3D skeletons as points in a lie group publication-title: Proc IEEE Int Conf Comput Vis Pattern Recognit contributor: fullname: vemulapalli – ident: ref44 doi: 10.1109/CVPRW.2012.6239233 – ident: ref17 doi: 10.1109/TPAMI.2013.167 – start-page: 137 year: 2006 ident: ref25 article-title: Motion templates for automatic classification and retrieval of motion capture data publication-title: Proc ACM SIGGRAPH/Eurographics Symp Comput Animation contributor: fullname: müller – ident: ref45 doi: 10.1109/TIP.2014.2365699 – ident: ref56 doi: 10.1109/TPAMI.2015.2453984 – ident: ref38 doi: 10.1007/978-3-642-33709-3_62 – ident: ref8 doi: 10.1109/TPAMI.2011.253 |
SSID | ssj0014503 |
Score | 2.625519 |
Snippet | In this paper, we focus on heterogeneous features learning for RGB-D activity recognition. We find that features from different channels (RGB, depth) could... |
SourceID | proquest crossref pubmed ieee |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 2186 |
SubjectTerms | action recognition Activity recognition Channels Datasets Feature extraction Feature recognition Heterogeneous features learning Image color analysis Iterative methods Learning RGB-D activity recognition Skeleton Subspaces Three-dimensional displays Transforms Visualization |
Title | Jointly Learning Heterogeneous Features for RGB-D Activity Recognition |
URI | https://ieeexplore.ieee.org/document/7784788 https://www.ncbi.nlm.nih.gov/pubmed/28026749 https://www.proquest.com/docview/2174440675 https://search.proquest.com/docview/1853349293 |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB7Ukx5c39YXEbxp122aNslxfayrsCKi4K2kaVZEaUXbg_56M-kDEQVvW7b0kZkh39eZ-QbggOmIU8WEpSUU04yB9lPBkLVmQRBnqKON_c6T63h8z64eoocZOOp6YYwxrvjM9PGny-Vnha7wU9kx5wLV3mdhlktR92p1GQMWuSnIFsHYCLc0om2QGcjju5vh5BKruOK-3f4HVOIIGypw9hJKaH7bj9yAlb-xpttzRj2YtE9bl5o896sy7evPH0KO_32dJVhswCcZ1t6yDDMmX4FeO9iBNHG-AgvfVApXYXRVPOXlywdptFgfyRhraArreqao3gmiyMqydmLxL7m9OPHPyFDXQynIbVufVORrcD86vzsd-834BV8zxkqfZkEqwthwkWYhywyPNWU8DKkWURRzFUieyjTIhJJCRpaWaC2oESKaRijsNA3XYS4vcrMJxEy5ypRlglpxlppQKWmPphaqDCyc0cKDw9YIyWutspE4djKQibNegtZLGut5sIqL2Z3ZrKMHO63dkiYQ3xNkXIwhLfJgv_vbhhDmRZRbpgQhC4o0ytCDjdre3bVbN9n6_Z7bME9xn3fNiTswV75VZteilDLdc-75BaZj3ys |
link.rule.ids | 315,782,786,798,27931,27932,54765 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6V9gA90BctaUsxEjfIduPYsX3cli7bx1ao2kq9WY7jRQiUIJoc4NfX4zxUIZB622ijPDwz8vdlZr4BeM8sF9Qw6WkJxTRjYuNcMmStRZJkBepoY7_z_Dqb3bKLO363Ah-HXhjnXCg-cyP8GXL5RWUb_FR2LIREtfdnsMaZyHjbrTXkDBgPc5A9hvEx7olE3yIzVseLL5P5OdZxZSMPAMZU4RAbKnH6EopoPtqRwoiV_6PNsOtMN2DeP29bbPJ91NT5yP75S8rxqS-0CS87-Ekmrb9swYort2GjH-1AukjfhvVHOoU7ML2ovpX1j9-kU2P9SmZYRVN553NVc08QRzaetxOPgMnN55P4E5nYdiwFuekrlKryFdxOzxans7gbwBBbxlgd0yLJZZo5IfMiZYUTmaVMpCm1kvNMmESJXOVJIY2SintiYq2kTkq-5CjttEx3YbWsSvcaiFsKUxjPBa0RLHepMcofLT1YGXtAY2UEH3oj6J-tzoYO_GSsdLCeRuvpznoR7OBiDmd26xjBYW833YXivUbOxRgSowjeDX_7IMLMiAnLpBG0oEyjSiPYa-09XLt3k_1_3_MtPJ8t5lf66vz68gBeUNz1Q6viIazWvxr3xmOWOj8KrvoAhpTieg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Jointly+Learning+Heterogeneous+Features+for+RGB-D+Activity+Recognition&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Hu%2C+Jian-Fang&rft.au=Zheng%2C+Wei-Shi&rft.au=Lai%2C+Jianhuang&rft.au=Zhang%2C+Jianguo&rft.date=2017-11-01&rft.issn=0162-8828&rft.eissn=2160-9292&rft.volume=39&rft.issue=11&rft.spage=2186&rft.epage=2200&rft_id=info:doi/10.1109%2FTPAMI.2016.2640292&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TPAMI_2016_2640292 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon |