Jointly Learning Heterogeneous Features for RGB-D Activity Recognition
In this paper, we focus on heterogeneous features learning for RGB-D activity recognition. We find that features from different channels (RGB, depth) could share some similar hidden structures, and then propose a joint learning model to simultaneously explore the shared and feature-specific componen...
Saved in:
Published in | IEEE transactions on pattern analysis and machine intelligence Vol. 39; no. 11; pp. 2186 - 2200 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.11.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In this paper, we focus on heterogeneous features learning for RGB-D activity recognition. We find that features from different channels (RGB, depth) could share some similar hidden structures, and then propose a joint learning model to simultaneously explore the shared and feature-specific components as an instance of heterogeneous multi-task learning. The proposed model formed in a unified framework is capable of: 1) jointly mining a set of subspaces with the same dimensionality to exploit latent shared features across different feature channels, 2) meanwhile, quantifying the shared and feature-specific components of features in the subspaces, and 3) transferring feature-specific intermediate transforms (i-transforms) for learning fusion of heterogeneous features across datasets. To efficiently train the joint model, a three-step iterative optimization algorithm is proposed, followed by a simple inference model. Extensive experimental results on four activity datasets have demonstrated the efficacy of the proposed method. Anew RGB-D activity dataset focusing on human-object interaction is further contributed, which presents more challenges for RGB-D activity benchmarking. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0162-8828 1939-3539 2160-9292 |
DOI: | 10.1109/TPAMI.2016.2640292 |