Hierarchical Nonlocal Residual Networks for Image Quality Assessment of Pediatric Diffusion MRI With Limited and Noisy Annotations
Fast and automated image quality assessment (IQA) of diffusion MR images is crucial for making timely decisions for rescans. However, learning a model for this task is challenging as the number of annotated data is limited and the annotation labels might not always be correct. As a remedy, we will i...
Saved in:
Published in | IEEE transactions on medical imaging Vol. 39; no. 11; pp. 3691 - 3702 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.11.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Fast and automated image quality assessment (IQA) of diffusion MR images is crucial for making timely decisions for rescans. However, learning a model for this task is challenging as the number of annotated data is limited and the annotation labels might not always be correct. As a remedy, we will introduce in this paper an automatic image quality assessment (IQA) method based on hierarchical non-local residual networks for pediatric diffusion MR images. Our IQA is performed in three sequential stages, i.e., 1) slice-wise IQA , where a nonlocal residual network is first pre-trained to annotate each slice with an initial quality rating (i.e., pass/questionable/fail), which is subsequently refined via iterative semi-supervised learning and slice self-training; 2) volume-wise IQA , which agglomerates the features extracted from the slices of a volume, and uses a nonlocal network to annotate the quality rating for each volume via iterative volume self-training; and 3) subject-wise IQA , which ensembles the volumetric IQA results to determine the overall image quality pertaining to a subject. Experimental results demonstrate that our method, trained using only samples of modest size, exhibits great generalizability, and is capable of conducting rapid hierarchical IQA with near-perfect accuracy. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 0278-0062 1558-254X 1558-254X |
DOI: | 10.1109/TMI.2020.3002708 |