Hierarchical Nonlocal Residual Networks for Image Quality Assessment of Pediatric Diffusion MRI With Limited and Noisy Annotations

Fast and automated image quality assessment (IQA) of diffusion MR images is crucial for making timely decisions for rescans. However, learning a model for this task is challenging as the number of annotated data is limited and the annotation labels might not always be correct. As a remedy, we will i...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on medical imaging Vol. 39; no. 11; pp. 3691 - 3702
Main Authors Liu, Siyuan, Thung, Kim-Han, Lin, Weili, Shen, Dinggang, Yap, Pew-Thian
Format Journal Article
LanguageEnglish
Published United States IEEE 01.11.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Fast and automated image quality assessment (IQA) of diffusion MR images is crucial for making timely decisions for rescans. However, learning a model for this task is challenging as the number of annotated data is limited and the annotation labels might not always be correct. As a remedy, we will introduce in this paper an automatic image quality assessment (IQA) method based on hierarchical non-local residual networks for pediatric diffusion MR images. Our IQA is performed in three sequential stages, i.e., 1) slice-wise IQA , where a nonlocal residual network is first pre-trained to annotate each slice with an initial quality rating (i.e., pass/questionable/fail), which is subsequently refined via iterative semi-supervised learning and slice self-training; 2) volume-wise IQA , which agglomerates the features extracted from the slices of a volume, and uses a nonlocal network to annotate the quality rating for each volume via iterative volume self-training; and 3) subject-wise IQA , which ensembles the volumetric IQA results to determine the overall image quality pertaining to a subject. Experimental results demonstrate that our method, trained using only samples of modest size, exhibits great generalizability, and is capable of conducting rapid hierarchical IQA with near-perfect accuracy.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0278-0062
1558-254X
1558-254X
DOI:10.1109/TMI.2020.3002708