Isolation and validation of a candidate Rsv3 gene from a soybean genotype that confers strain-specific resistance to soybean mosaic virus
Soybean mosaic virus (SMV), a member of the genus Potyvirus, significantly reduces soybean production worldwide. Rsv3, which confers strain-specific resistance to SMV, was previously mapped between the markers A519F/R and M3Satt in chromosome 14 of the soybean [Glycine max (L.) Merr.] genotype L29....
Saved in:
Published in | Virology (New York, N.Y.) Vol. 513; pp. 153 - 159 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.01.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Soybean mosaic virus (SMV), a member of the genus Potyvirus, significantly reduces soybean production worldwide. Rsv3, which confers strain-specific resistance to SMV, was previously mapped between the markers A519F/R and M3Satt in chromosome 14 of the soybean [Glycine max (L.) Merr.] genotype L29. Analysis of the soybean genome database revealed that five different NBS-LRR sequences exist between the flanking markers. Among these candidate Rsv3 genes, the full-length cDNA of the Glyma.14g204700 was successfully cloned from L29. Over-expression of Glyma.14g204700 in leaves inoculated with SMV inhibited viral infection in a soybean genotype lacking Rsv3. In addition, the transient silencing of the candidate gene caused a high accumulation of an avirulent strain in L29 carrying Rsv3. Our results therefore provide additional line of evidence to support that Glyma.14g204700 is likely Rsv3 gene that confers strain-specific resistance to SMV.
•An Rsv3 candidate, Glyma.14g204700, was isolated from soybean genotype L29.•Transient expression of Glyma.14g204700 inhibited SMV-G5H but not SMV-G7H.•Transient silencing of Glyma.14g204700 elevated accumulation of SMV-G5H. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0042-6822 1096-0341 1096-0341 |
DOI: | 10.1016/j.virol.2017.10.014 |