Use of a photocatalytic membrane reactor for the removal of natural organic matter in water: Effect of photoinduced desorption and ferrihydrite adsorption

The photocatalytic degradation of natural organic matter (NOM) would be an attractive option in the treatment of drinking water. The performance of a submerged photocatalytic membrane reactor (PMR) was investigated with regard to the removal of NOM and the control of membrane fouling. In particular,...

Full description

Saved in:
Bibliographic Details
Published inJournal of membrane science Vol. 322; no. 2; pp. 368 - 374
Main Authors Choo, Kwang-Ho, Tao, Ran, Kim, Min-Jin
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.09.2008
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The photocatalytic degradation of natural organic matter (NOM) would be an attractive option in the treatment of drinking water. The performance of a submerged photocatalytic membrane reactor (PMR) was investigated with regard to the removal of NOM and the control of membrane fouling. In particular, this work focused on the adsorption and desorption of humic acids (HA) and lake water NOM at the surface of TiO 2 photocatalyts and ferrihydrite (FH) adsorbents in the PMR for water treatment. The addition of FH particles with a large sorption capacity helped remove the NOM released from TiO 2 particles, but FH suspended in water affected the photocatalysis of lake water NOM with a low specific UV absorbance (SUVA) value. To prevent the UV light being scattered by FH without any photocatalytic activity, FH particles were attached to a submerged microfiltration (MF) membrane, which contributed to a greater removal of NOM during long-term PMR operation. The further removal of NOM from aqueous solution was achieved due to the synergistic effect of TiO 2 photocatalysis and FH adsorption in PMR while minimizing the influence of photoinduced desorption of NOM. No significant membrane fouling occurred when the submerged PMR was operated even at high flux levels (>25 L/m 2 h), as long as photocatalytic decomposition took place.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0376-7388
1873-3123
DOI:10.1016/j.memsci.2008.05.069