Characterisation of oil palm trunk and frond as fuel for biomass thermochemical

The rate of oil palm production in Malaysia increases annually and as a result, the oil palm wastes, especially oil palm trunk (OPT) and oil palm fronds (OPF) remain abundant. A suitable way of converting this abundant waste to renewable energy is through thermochemical conversion. Thus, this study...

Full description

Saved in:
Bibliographic Details
Published inIOP conference series. Materials Science and Engineering Vol. 863; no. 1; pp. 12011 - 12020
Main Authors Umar, H A, Sulaiman, S A, Ahmad, R K, Tamili, S N
Format Journal Article
LanguageEnglish
Published Bristol IOP Publishing 01.05.2020
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The rate of oil palm production in Malaysia increases annually and as a result, the oil palm wastes, especially oil palm trunk (OPT) and oil palm fronds (OPF) remain abundant. A suitable way of converting this abundant waste to renewable energy is through thermochemical conversion. Thus, this study investigates the characteristics of OPT and OPF biomass, for use as feedstock in thermochemical processes like gasification, pyrolysis, and combustion. The analysis carried out includes; ultimate (CHNSO) and proximate (thermogravimetric) analysis, calorific value, field emission scanning electron microscopy (FESEM) and x-ray fluorescence (XRF). Both feedstocks exhibited potential for use as fuel in biomass thermochemical conversion. The CHNSO analysis showed the presence of sufficient carbon, hydrogen and oxygen elements in both feedstocks, with carbon being the highest 45.42% in OPT and 43.35% in OPF. The percentages of nitrogen and sulphur which are required to be less for a good fuel were also obtained in low quantities for both fuel; 0.47% and 0.13% in OPT and 0.76% and 0.45% in OPF, respectively. The thermogravimetric analysis revealed both feedstocks to be having high volatile matter 62.28% in OPT and 66.10% in OPF. Meanwhile, sufficient fixed carbon content of 26.18% in OPT and 25.68% in OPF with low ash content of 9.82% in OPT and 6.32% in OPF were obtained in the analysis. FESEM and XRF were used to investigate the surface morphology, elemental and mineralogical nature of the samples. The findings were compared with those of other biomass and non-biomass materials. The EDX graph showed the presence of carbon and oxygen in a higher amount while in the XRF analysis CaO and K2O were the major oxides present in both OPT and OPF, with a low amount of SiO making the feedstocks less prone to agglomeration during thermochemical conversion.
ISSN:1757-8981
1757-899X
DOI:10.1088/1757-899X/863/1/012011