Learning mixture models with the regularized latent maximum entropy principle
This paper presents a new approach to estimating mixture models based on a recent inference principle we have proposed: the latent maximum entropy principle (LME). LME is different from Jaynes' maximum entropy principle, standard maximum likelihood, and maximum a posteriori probability estimati...
Saved in:
Published in | IEEE transactions on neural networks Vol. 15; no. 4; pp. 903 - 916 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.07.2004
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper presents a new approach to estimating mixture models based on a recent inference principle we have proposed: the latent maximum entropy principle (LME). LME is different from Jaynes' maximum entropy principle, standard maximum likelihood, and maximum a posteriori probability estimation. We demonstrate the LME principle by deriving new algorithms for mixture model estimation, and show how robust new variants of the expectation maximization (EM) algorithm can be developed. We show that a regularized version of LME (RLME), is effective at estimating mixture models. It generally yields better results than plain LME, which in turn is often better than maximum likelihood and maximum a posterior estimation, particularly when inferring latent variable models from small amounts of data. |
---|---|
AbstractList | This paper presents a new approach to estimating mixture models based on a recent inference principle we have proposed: the latent maximum entropy principle (LME). LME is different from Jaynes' maximum entropy principle, standard maximum likelihood, and maximum aposteriori probability estimation. We demonstrate the LME principle by deriving new algorithms for mixture model estimation, and show how robust new variants of the expectation maximization (EM) algorithm can be developed. We show that a regularized version of LME (RLME), is effective at estimating mixture models. It generally yields better results than plain LME, which in turn is often better than maximum likelihood and maximum a posterior estimation, particularly when inferring latent variable models from small amounts of data. This paper presents a new approach to estimating mixture models based on a recent inference principle we have proposed: the latent maximum entropy principle (LME). LME is different from Jaynes' maximum entropy principle, standard maximum likelihood, and maximum a posteriori probability estimation. We demonstrate the LME principle by deriving new algorithms for mixture model estimation, and show how robust new variants of the expectation maximization (EM) algorithm can be developed. We show that a regularized version of LME (RLME), is effective at estimating mixture models. It generally yields better results than plain LME, which in turn is often better than maximum likelihood and maximum a posterior estimation, particularly when inferring latent variable models from small amounts of data. |
Author | Fuchun Peng Schuurmans, D. Yunxin Zhao Shaojun Wang |
Author_xml | – sequence: 1 surname: Shaojun Wang fullname: Shaojun Wang organization: Dept. of Comput. Sci., Univ. of Alberta, Alta., Canada – sequence: 2 givenname: D. surname: Schuurmans fullname: Schuurmans, D. organization: Dept. of Comput. Sci., Univ. of Alberta, Alta., Canada – sequence: 3 surname: Fuchun Peng fullname: Fuchun Peng – sequence: 4 surname: Yunxin Zhao fullname: Yunxin Zhao |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/15461082$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtPHDEMgKOKqjzPPSChnOhpFjuvTY5oBaXSFi5wHmVmPJBqHksyI6C_vkG7Ejd6siV_tmx_h2xvGAdi7DvCAhHcxf3t7UIAqIUVdqn1F3aATmEB4ORezkHpwgmx3GeHKf0BQKXBfGP7qJVBsOKA_V6Tj0MYHnkfXqc5Eu_HhrrEX8L0xKcn4pEe587H8Jca3vmJhon3_jX0c89zHsfNG9_EMNRh09Ex-9r6LtHJLh6xh-ur-9VNsb77-Wt1uS5qpdRU4LJppVHgoALt28ZKkkp7RCMrqvJdosmLKqzBNk6apQYt20aYtjJVC5bkEfuxnbuJ4_NMaSr7kGrqOj_QOKfSARqX_2Iyef4paYyTWlj7X1BYqZ1BzODFFqzjmFKktszn9z6-lQjlu5QySynfpZRbKbnjbDd6rnpqPvidhQycboFARB9liSCNkP8AGwmRgg |
CODEN | ITNNEP |
CitedBy_id | crossref_primary_10_1016_j_specom_2009_10_003 crossref_primary_10_1109_TNN_2005_860857 crossref_primary_10_3390_e15125439 |
Cites_doi | 10.1109/34.588021 10.1109/89.279278 10.1214/aoms/1177692379 10.1016/S0893-6080(97)00133-0 10.1016/0167-9473(93)E0056-A 10.1007/978-94-011-5430-7_5 10.1016/S0364-0213(85)80012-4 10.1002/0471200611 10.1111/j.1469-1809.1936.tb02137.x 10.1002/0471721182 10.1093/oso/9780198522195.001.0001 10.1214/aos/1176346060 10.1111/j.2517-6161.1977.tb01600.x |
ContentType | Journal Article |
DBID | RIA RIE CGR CUY CVF ECM EIF NPM AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D 7X8 7SP F28 FR3 |
DOI | 10.1109/TNN.2004.828755 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE/IET Electronic Library (IEL) Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic Electronics & Communications Abstracts ANTE: Abstracts in New Technology & Engineering Engineering Research Database |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional MEDLINE - Academic Electronics & Communications Abstracts Engineering Research Database ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | MEDLINE Computer and Information Systems Abstracts Technology Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE/IET Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Anatomy & Physiology Computer Science |
EISSN | 1941-0093 |
EndPage | 916 |
ExternalDocumentID | 10_1109_TNN_2004_828755 15461082 1310362 |
Genre | orig-research Validation Studies Comparative Study Evaluation Studies Journal Article |
GroupedDBID | --- -~X .DC 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAJGR AASAJ AAYOK ABJNI ABQJQ ABVLG ACGFS AETIX AI. AIBXA ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RIG RNS S10 TAE TN5 VH1 XFK CGR CUY CVF ECM EIF NPM AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D 7X8 7SP F28 FR3 |
ID | FETCH-LOGICAL-c444t-17df364090b05afd83e345a1163beb1092d45041c08d93675053fd26fb6bf08e3 |
IEDL.DBID | RIE |
ISSN | 1045-9227 |
IngestDate | Sat Aug 17 04:00:39 EDT 2024 Thu Aug 15 22:42:31 EDT 2024 Fri Aug 16 21:32:13 EDT 2024 Fri Aug 23 01:59:27 EDT 2024 Sat Sep 28 07:44:44 EDT 2024 Wed Jun 26 19:20:34 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c444t-17df364090b05afd83e345a1163beb1092d45041c08d93675053fd26fb6bf08e3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
OpenAccessLink | https://corescholar.libraries.wright.edu/cgi/viewcontent.cgi?article=2393&context=knoesis |
PMID | 15461082 |
PQID | 28359611 |
PQPubID | 23500 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_901692006 proquest_miscellaneous_66935288 ieee_primary_1310362 proquest_miscellaneous_28359611 crossref_primary_10_1109_TNN_2004_828755 pubmed_primary_15461082 |
PublicationCentury | 2000 |
PublicationDate | 2004-07-01 |
PublicationDateYYYYMMDD | 2004-07-01 |
PublicationDate_xml | – month: 07 year: 2004 text: 2004-07-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | IEEE transactions on neural networks |
PublicationTitleAbbrev | TNN |
PublicationTitleAlternate | IEEE Trans Neural Netw |
PublicationYear | 2004 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | bernardo (ref3) 2000 ref11 bertsekas (ref4) 1999 ref10 ref1 jaynes (ref14) 1983 ref16 borwein (ref5) 2000 riezler (ref22) 1999 lafferty (ref15) 2001 ref24 gauvain (ref12) 1994; 2 lehmann (ref18) 1998 ref26 ref20 hastie (ref13) 2001 barron (ref2) 1991; 19 wang (ref25) 2003 ref8 ref7 tikhonov (ref23) 1992 ref9 ref6 lauritzen (ref17) 1996 luenberger (ref19) 1969 minka (ref21) 2000 |
References_xml | – year: 2000 ident: ref5 publication-title: Convex Analysis and Nonlinear Optimization Theory and Examples contributor: fullname: borwein – ident: ref9 doi: 10.1109/34.588021 – year: 1998 ident: ref18 publication-title: Theory of Point Estimation contributor: fullname: lehmann – volume: 2 start-page: 291 year: 1994 ident: ref12 article-title: Maximum a posteriori estimation for multivariate Gaussian mixture observations of Markov chains publication-title: IEEE Trans Speech Audio Processing doi: 10.1109/89.279278 contributor: fullname: gauvain – year: 1969 ident: ref19 publication-title: Optimization by vector space methods contributor: fullname: luenberger – ident: ref8 doi: 10.1214/aoms/1177692379 – ident: ref24 doi: 10.1016/S0893-6080(97)00133-0 – year: 1999 ident: ref4 publication-title: Nonlinear Programming contributor: fullname: bertsekas – year: 2003 ident: ref25 publication-title: The Latent Maximum Entropy Principle contributor: fullname: wang – year: 1983 ident: ref14 publication-title: Papers on Probability Statistics and Statistical Physics contributor: fullname: jaynes – ident: ref16 doi: 10.1016/0167-9473(93)E0056-A – year: 1992 ident: ref23 publication-title: Ill-posed problems in natural sciences contributor: fullname: tikhonov – ident: ref7 doi: 10.1007/978-94-011-5430-7_5 – ident: ref1 doi: 10.1016/S0364-0213(85)80012-4 – year: 1999 ident: ref22 publication-title: Probabilistic Constraint Logic Programming contributor: fullname: riezler – ident: ref6 doi: 10.1002/0471200611 – volume: 19 start-page: 1347 year: 1991 ident: ref2 article-title: Approximation of density functions by sequences of exponential families publication-title: Ann Statist contributor: fullname: barron – ident: ref11 doi: 10.1111/j.1469-1809.1936.tb02137.x – ident: ref20 doi: 10.1002/0471721182 – year: 1996 ident: ref17 publication-title: Graphical Models doi: 10.1093/oso/9780198522195.001.0001 contributor: fullname: lauritzen – ident: ref26 doi: 10.1214/aos/1176346060 – year: 2000 ident: ref21 publication-title: Estimating a Dirichlet Distribution contributor: fullname: minka – year: 2001 ident: ref13 publication-title: The Elements of Statistical Learning-Data Mining Inference and Prediction contributor: fullname: hastie – start-page: 282 year: 2001 ident: ref15 article-title: Conditional random fields: probabilistic models for segmenting and labeling sequence data publication-title: Proc Int Conf Machine Learning contributor: fullname: lafferty – ident: ref10 doi: 10.1111/j.2517-6161.1977.tb01600.x – year: 2000 ident: ref3 publication-title: Bayesian Theory contributor: fullname: bernardo |
SSID | ssj0014506 |
Score | 1.8358643 |
Snippet | This paper presents a new approach to estimating mixture models based on a recent inference principle we have proposed: the latent maximum entropy principle... |
SourceID | proquest crossref pubmed ieee |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 903 |
SubjectTerms | Algorithms Artificial Intelligence Computer science Computer Simulation Decision Support Techniques Entropy Estimating Inference Inference algorithms Information Storage and Retrieval - methods Information Theory Iterative algorithms Learning Machine learning Maximization Maximum entropy Maximum likelihood estimation Models, Statistical Neural networks Neural Networks (Computer) Parametric statistics Pattern Recognition, Automated Probability Learning Robustness State estimation Yield estimation |
Title | Learning mixture models with the regularized latent maximum entropy principle |
URI | https://ieeexplore.ieee.org/document/1310362 https://www.ncbi.nlm.nih.gov/pubmed/15461082 https://search.proquest.com/docview/28359611 https://search.proquest.com/docview/66935288 https://search.proquest.com/docview/901692006 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VnuBA6S6PBUp9QIgD2TqOncTHClFVlXZPrdRbFMc2WkGyq20itf31zDhJC4iVuEXRSHE8Y3te_j6Aj2ViJK8qHZXKekrdZJHmMo4yozPlyyrT4ZLYYpmeX8mLa3W9B18e7sI450LzmZvTY6jl23XVUarsJCZSLNpwn2Ra93e1HioGUgUeTYwuVKSFyAYYn5jrk8vlMgSCcwJ3V4GrRhHMeC7-OIwCu8puRzMcOGcHsBiH2veZ_Jh3rZlX93-hOP7vv7yA54PnyU57UzmEPddMYHraYNRd37FPLPSChiT7BA5Gsgc2rP0JPPsNuXAKiwGX9TurV7dUhGCBUueGUV6XoVPJtoHkfru6d5b9RIe2aVld3q7qrmaUUF5v7thmTPS_hKuzb5dfz6OBmSGqpJRtFGfWJymGhtxwVXqbJy6RqozRuTO4-XMtLOpDxhXPrU4wJsGl7q1IvUmN57lLXsF-s27cG2DWGmfRyfRCeFkpkZfooOAb4VEcFTaDz6OKik0PwFGEwIXrAhVLNJqy6BU7gynN86NYP8UzOB5VWuDaoYJI2bh1d1MQ1pxO43i3RJpqgr_BUbAdEprgbCgvM4PXvbk8fn-wsrf_Htc7eNq3AVHv73vYb7edO0IPpzUfgmn_Al2a9iY |
link.rule.ids | 315,783,787,799,27938,27939,55088 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFH-axgE4bNACK1_zASEOpHMSO4mPE2IqsPbUSbtFcWyjCpJWXSJt--t5z0k2QFTiFkWW4vj54_c-_PsBvCtiLXhZqqCQxlHoJg0UF2GQapVKV5Sp8pfE5otkdiG-XsrLPfh4dxfGWuuLz-yUHn0u36zLlkJlJyGJYtGG-0ASruhua93lDIT0SproX8hARVHaE_mEXJ0sFwvvCk6J3l16tRpJRONZ9Mdx5PVVdkNNf-ScHcJ86GxXafJj2jZ6Wt7-xeP4v3_zBA567MlOu8nyFPZsPYLxaY1-d3XD3jNfDerD7CM4HOQeWL_6R_D4N-7CMcx7ZtbvrFpdUxqCeVGdK0aRXYawkm29zP12dWsN-4mQtm5YVVyvqrZiFFJeb27YZgj1P4OLs8_LT7Og12YISiFEE4SpcXGCziHXXBbOZLGNhSxChHcat3-uIoP2EGHJM6Ni9EpwsTsTJU4n2vHMxs9hv17X9giYMdoahJkuipwoZZQVCFHwTeSwORpsAh8GE-WbjoIj964LVzkaloQ0Rd4ZdgJjGuf7Zt0QT-B4MGmOq4dSIkVt1-1VTmxzKgnD3S2SRBEBDvaC7WihiNCGIjMTeNFNl_vv97Ps5b_7dQwPZ8v5eX7-ZfHtFTzqioKoEvg17Dfb1r5BvNPot36a_wJkG_lz |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+mixture+models+with+the+regularized+latent+maximum+entropy+principle&rft.jtitle=IEEE+transactions+on+neural+networks&rft.au=Wang%2C+Shaojun&rft.au=Schuurmans%2C+D&rft.au=Peng%2C+Fuchun&rft.au=Zhao%2C+Yunxin&rft.date=2004-07-01&rft.issn=1045-9227&rft.volume=15&rft.issue=4&rft_id=info:doi/10.1109%2FTNN.2004.828755&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1045-9227&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1045-9227&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1045-9227&client=summon |