Learning mixture models with the regularized latent maximum entropy principle

This paper presents a new approach to estimating mixture models based on a recent inference principle we have proposed: the latent maximum entropy principle (LME). LME is different from Jaynes' maximum entropy principle, standard maximum likelihood, and maximum a posteriori probability estimati...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on neural networks Vol. 15; no. 4; pp. 903 - 916
Main Authors Shaojun Wang, Schuurmans, D., Fuchun Peng, Yunxin Zhao
Format Journal Article
LanguageEnglish
Published United States IEEE 01.07.2004
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper presents a new approach to estimating mixture models based on a recent inference principle we have proposed: the latent maximum entropy principle (LME). LME is different from Jaynes' maximum entropy principle, standard maximum likelihood, and maximum a posteriori probability estimation. We demonstrate the LME principle by deriving new algorithms for mixture model estimation, and show how robust new variants of the expectation maximization (EM) algorithm can be developed. We show that a regularized version of LME (RLME), is effective at estimating mixture models. It generally yields better results than plain LME, which in turn is often better than maximum likelihood and maximum a posterior estimation, particularly when inferring latent variable models from small amounts of data.
AbstractList This paper presents a new approach to estimating mixture models based on a recent inference principle we have proposed: the latent maximum entropy principle (LME). LME is different from Jaynes' maximum entropy principle, standard maximum likelihood, and maximum aposteriori probability estimation. We demonstrate the LME principle by deriving new algorithms for mixture model estimation, and show how robust new variants of the expectation maximization (EM) algorithm can be developed. We show that a regularized version of LME (RLME), is effective at estimating mixture models. It generally yields better results than plain LME, which in turn is often better than maximum likelihood and maximum a posterior estimation, particularly when inferring latent variable models from small amounts of data.
This paper presents a new approach to estimating mixture models based on a recent inference principle we have proposed: the latent maximum entropy principle (LME). LME is different from Jaynes' maximum entropy principle, standard maximum likelihood, and maximum a posteriori probability estimation. We demonstrate the LME principle by deriving new algorithms for mixture model estimation, and show how robust new variants of the expectation maximization (EM) algorithm can be developed. We show that a regularized version of LME (RLME), is effective at estimating mixture models. It generally yields better results than plain LME, which in turn is often better than maximum likelihood and maximum a posterior estimation, particularly when inferring latent variable models from small amounts of data.
Author Fuchun Peng
Schuurmans, D.
Yunxin Zhao
Shaojun Wang
Author_xml – sequence: 1
  surname: Shaojun Wang
  fullname: Shaojun Wang
  organization: Dept. of Comput. Sci., Univ. of Alberta, Alta., Canada
– sequence: 2
  givenname: D.
  surname: Schuurmans
  fullname: Schuurmans, D.
  organization: Dept. of Comput. Sci., Univ. of Alberta, Alta., Canada
– sequence: 3
  surname: Fuchun Peng
  fullname: Fuchun Peng
– sequence: 4
  surname: Yunxin Zhao
  fullname: Yunxin Zhao
BackLink https://www.ncbi.nlm.nih.gov/pubmed/15461082$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtPHDEMgKOKqjzPPSChnOhpFjuvTY5oBaXSFi5wHmVmPJBqHksyI6C_vkG7Ejd6siV_tmx_h2xvGAdi7DvCAhHcxf3t7UIAqIUVdqn1F3aATmEB4ORezkHpwgmx3GeHKf0BQKXBfGP7qJVBsOKA_V6Tj0MYHnkfXqc5Eu_HhrrEX8L0xKcn4pEe587H8Jca3vmJhon3_jX0c89zHsfNG9_EMNRh09Ex-9r6LtHJLh6xh-ur-9VNsb77-Wt1uS5qpdRU4LJppVHgoALt28ZKkkp7RCMrqvJdosmLKqzBNk6apQYt20aYtjJVC5bkEfuxnbuJ4_NMaSr7kGrqOj_QOKfSARqX_2Iyef4paYyTWlj7X1BYqZ1BzODFFqzjmFKktszn9z6-lQjlu5QySynfpZRbKbnjbDd6rnpqPvidhQycboFARB9liSCNkP8AGwmRgg
CODEN ITNNEP
CitedBy_id crossref_primary_10_1016_j_specom_2009_10_003
crossref_primary_10_1109_TNN_2005_860857
crossref_primary_10_3390_e15125439
Cites_doi 10.1109/34.588021
10.1109/89.279278
10.1214/aoms/1177692379
10.1016/S0893-6080(97)00133-0
10.1016/0167-9473(93)E0056-A
10.1007/978-94-011-5430-7_5
10.1016/S0364-0213(85)80012-4
10.1002/0471200611
10.1111/j.1469-1809.1936.tb02137.x
10.1002/0471721182
10.1093/oso/9780198522195.001.0001
10.1214/aos/1176346060
10.1111/j.2517-6161.1977.tb01600.x
ContentType Journal Article
DBID RIA
RIE
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
7X8
7SP
F28
FR3
DOI 10.1109/TNN.2004.828755
DatabaseName IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE/IET Electronic Library (IEL)
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
Electronics & Communications Abstracts
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
Electronics & Communications Abstracts
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList MEDLINE

Computer and Information Systems Abstracts
Technology Research Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Anatomy & Physiology
Computer Science
EISSN 1941-0093
EndPage 916
ExternalDocumentID 10_1109_TNN_2004_828755
15461082
1310362
Genre orig-research
Validation Studies
Comparative Study
Evaluation Studies
Journal Article
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAJGR
AASAJ
AAYOK
ABJNI
ABQJQ
ABVLG
ACGFS
AETIX
AI.
AIBXA
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RIG
RNS
S10
TAE
TN5
VH1
XFK
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
7X8
7SP
F28
FR3
ID FETCH-LOGICAL-c444t-17df364090b05afd83e345a1163beb1092d45041c08d93675053fd26fb6bf08e3
IEDL.DBID RIE
ISSN 1045-9227
IngestDate Sat Aug 17 04:00:39 EDT 2024
Thu Aug 15 22:42:31 EDT 2024
Fri Aug 16 21:32:13 EDT 2024
Fri Aug 23 01:59:27 EDT 2024
Sat Sep 28 07:44:44 EDT 2024
Wed Jun 26 19:20:34 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c444t-17df364090b05afd83e345a1163beb1092d45041c08d93675053fd26fb6bf08e3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
OpenAccessLink https://corescholar.libraries.wright.edu/cgi/viewcontent.cgi?article=2393&context=knoesis
PMID 15461082
PQID 28359611
PQPubID 23500
PageCount 14
ParticipantIDs proquest_miscellaneous_901692006
proquest_miscellaneous_66935288
ieee_primary_1310362
proquest_miscellaneous_28359611
crossref_primary_10_1109_TNN_2004_828755
pubmed_primary_15461082
PublicationCentury 2000
PublicationDate 2004-07-01
PublicationDateYYYYMMDD 2004-07-01
PublicationDate_xml – month: 07
  year: 2004
  text: 2004-07-01
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE transactions on neural networks
PublicationTitleAbbrev TNN
PublicationTitleAlternate IEEE Trans Neural Netw
PublicationYear 2004
Publisher IEEE
Publisher_xml – name: IEEE
References bernardo (ref3) 2000
ref11
bertsekas (ref4) 1999
ref10
ref1
jaynes (ref14) 1983
ref16
borwein (ref5) 2000
riezler (ref22) 1999
lafferty (ref15) 2001
ref24
gauvain (ref12) 1994; 2
lehmann (ref18) 1998
ref26
ref20
hastie (ref13) 2001
barron (ref2) 1991; 19
wang (ref25) 2003
ref8
ref7
tikhonov (ref23) 1992
ref9
ref6
lauritzen (ref17) 1996
luenberger (ref19) 1969
minka (ref21) 2000
References_xml – year: 2000
  ident: ref5
  publication-title: Convex Analysis and Nonlinear Optimization Theory and Examples
  contributor:
    fullname: borwein
– ident: ref9
  doi: 10.1109/34.588021
– year: 1998
  ident: ref18
  publication-title: Theory of Point Estimation
  contributor:
    fullname: lehmann
– volume: 2
  start-page: 291
  year: 1994
  ident: ref12
  article-title: Maximum a posteriori estimation for multivariate Gaussian mixture observations of Markov chains
  publication-title: IEEE Trans Speech Audio Processing
  doi: 10.1109/89.279278
  contributor:
    fullname: gauvain
– year: 1969
  ident: ref19
  publication-title: Optimization by vector space methods
  contributor:
    fullname: luenberger
– ident: ref8
  doi: 10.1214/aoms/1177692379
– ident: ref24
  doi: 10.1016/S0893-6080(97)00133-0
– year: 1999
  ident: ref4
  publication-title: Nonlinear Programming
  contributor:
    fullname: bertsekas
– year: 2003
  ident: ref25
  publication-title: The Latent Maximum Entropy Principle
  contributor:
    fullname: wang
– year: 1983
  ident: ref14
  publication-title: Papers on Probability Statistics and Statistical Physics
  contributor:
    fullname: jaynes
– ident: ref16
  doi: 10.1016/0167-9473(93)E0056-A
– year: 1992
  ident: ref23
  publication-title: Ill-posed problems in natural sciences
  contributor:
    fullname: tikhonov
– ident: ref7
  doi: 10.1007/978-94-011-5430-7_5
– ident: ref1
  doi: 10.1016/S0364-0213(85)80012-4
– year: 1999
  ident: ref22
  publication-title: Probabilistic Constraint Logic Programming
  contributor:
    fullname: riezler
– ident: ref6
  doi: 10.1002/0471200611
– volume: 19
  start-page: 1347
  year: 1991
  ident: ref2
  article-title: Approximation of density functions by sequences of exponential families
  publication-title: Ann Statist
  contributor:
    fullname: barron
– ident: ref11
  doi: 10.1111/j.1469-1809.1936.tb02137.x
– ident: ref20
  doi: 10.1002/0471721182
– year: 1996
  ident: ref17
  publication-title: Graphical Models
  doi: 10.1093/oso/9780198522195.001.0001
  contributor:
    fullname: lauritzen
– ident: ref26
  doi: 10.1214/aos/1176346060
– year: 2000
  ident: ref21
  publication-title: Estimating a Dirichlet Distribution
  contributor:
    fullname: minka
– year: 2001
  ident: ref13
  publication-title: The Elements of Statistical Learning-Data Mining Inference and Prediction
  contributor:
    fullname: hastie
– start-page: 282
  year: 2001
  ident: ref15
  article-title: Conditional random fields: probabilistic models for segmenting and labeling sequence data
  publication-title: Proc Int Conf Machine Learning
  contributor:
    fullname: lafferty
– ident: ref10
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– year: 2000
  ident: ref3
  publication-title: Bayesian Theory
  contributor:
    fullname: bernardo
SSID ssj0014506
Score 1.8358643
Snippet This paper presents a new approach to estimating mixture models based on a recent inference principle we have proposed: the latent maximum entropy principle...
SourceID proquest
crossref
pubmed
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 903
SubjectTerms Algorithms
Artificial Intelligence
Computer science
Computer Simulation
Decision Support Techniques
Entropy
Estimating
Inference
Inference algorithms
Information Storage and Retrieval - methods
Information Theory
Iterative algorithms
Learning
Machine learning
Maximization
Maximum entropy
Maximum likelihood estimation
Models, Statistical
Neural networks
Neural Networks (Computer)
Parametric statistics
Pattern Recognition, Automated
Probability Learning
Robustness
State estimation
Yield estimation
Title Learning mixture models with the regularized latent maximum entropy principle
URI https://ieeexplore.ieee.org/document/1310362
https://www.ncbi.nlm.nih.gov/pubmed/15461082
https://search.proquest.com/docview/28359611
https://search.proquest.com/docview/66935288
https://search.proquest.com/docview/901692006
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VnuBA6S6PBUp9QIgD2TqOncTHClFVlXZPrdRbFMc2WkGyq20itf31zDhJC4iVuEXRSHE8Y3te_j6Aj2ViJK8qHZXKekrdZJHmMo4yozPlyyrT4ZLYYpmeX8mLa3W9B18e7sI450LzmZvTY6jl23XVUarsJCZSLNpwn2Ra93e1HioGUgUeTYwuVKSFyAYYn5jrk8vlMgSCcwJ3V4GrRhHMeC7-OIwCu8puRzMcOGcHsBiH2veZ_Jh3rZlX93-hOP7vv7yA54PnyU57UzmEPddMYHraYNRd37FPLPSChiT7BA5Gsgc2rP0JPPsNuXAKiwGX9TurV7dUhGCBUueGUV6XoVPJtoHkfru6d5b9RIe2aVld3q7qrmaUUF5v7thmTPS_hKuzb5dfz6OBmSGqpJRtFGfWJymGhtxwVXqbJy6RqozRuTO4-XMtLOpDxhXPrU4wJsGl7q1IvUmN57lLXsF-s27cG2DWGmfRyfRCeFkpkZfooOAb4VEcFTaDz6OKik0PwFGEwIXrAhVLNJqy6BU7gynN86NYP8UzOB5VWuDaoYJI2bh1d1MQ1pxO43i3RJpqgr_BUbAdEprgbCgvM4PXvbk8fn-wsrf_Htc7eNq3AVHv73vYb7edO0IPpzUfgmn_Al2a9iY
link.rule.ids 315,783,787,799,27938,27939,55088
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFH-axgE4bNACK1_zASEOpHMSO4mPE2IqsPbUSbtFcWyjCpJWXSJt--t5z0k2QFTiFkWW4vj54_c-_PsBvCtiLXhZqqCQxlHoJg0UF2GQapVKV5Sp8pfE5otkdiG-XsrLPfh4dxfGWuuLz-yUHn0u36zLlkJlJyGJYtGG-0ASruhua93lDIT0SproX8hARVHaE_mEXJ0sFwvvCk6J3l16tRpJRONZ9Mdx5PVVdkNNf-ScHcJ86GxXafJj2jZ6Wt7-xeP4v3_zBA567MlOu8nyFPZsPYLxaY1-d3XD3jNfDerD7CM4HOQeWL_6R_D4N-7CMcx7ZtbvrFpdUxqCeVGdK0aRXYawkm29zP12dWsN-4mQtm5YVVyvqrZiFFJeb27YZgj1P4OLs8_LT7Og12YISiFEE4SpcXGCziHXXBbOZLGNhSxChHcat3-uIoP2EGHJM6Ni9EpwsTsTJU4n2vHMxs9hv17X9giYMdoahJkuipwoZZQVCFHwTeSwORpsAh8GE-WbjoIj964LVzkaloQ0Rd4ZdgJjGuf7Zt0QT-B4MGmOq4dSIkVt1-1VTmxzKgnD3S2SRBEBDvaC7WihiNCGIjMTeNFNl_vv97Ps5b_7dQwPZ8v5eX7-ZfHtFTzqioKoEvg17Dfb1r5BvNPot36a_wJkG_lz
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+mixture+models+with+the+regularized+latent+maximum+entropy+principle&rft.jtitle=IEEE+transactions+on+neural+networks&rft.au=Wang%2C+Shaojun&rft.au=Schuurmans%2C+D&rft.au=Peng%2C+Fuchun&rft.au=Zhao%2C+Yunxin&rft.date=2004-07-01&rft.issn=1045-9227&rft.volume=15&rft.issue=4&rft_id=info:doi/10.1109%2FTNN.2004.828755&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1045-9227&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1045-9227&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1045-9227&client=summon