Learning mixture models with the regularized latent maximum entropy principle
This paper presents a new approach to estimating mixture models based on a recent inference principle we have proposed: the latent maximum entropy principle (LME). LME is different from Jaynes' maximum entropy principle, standard maximum likelihood, and maximum a posteriori probability estimati...
Saved in:
Published in | IEEE transactions on neural networks Vol. 15; no. 4; pp. 903 - 916 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.07.2004
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This paper presents a new approach to estimating mixture models based on a recent inference principle we have proposed: the latent maximum entropy principle (LME). LME is different from Jaynes' maximum entropy principle, standard maximum likelihood, and maximum a posteriori probability estimation. We demonstrate the LME principle by deriving new algorithms for mixture model estimation, and show how robust new variants of the expectation maximization (EM) algorithm can be developed. We show that a regularized version of LME (RLME), is effective at estimating mixture models. It generally yields better results than plain LME, which in turn is often better than maximum likelihood and maximum a posterior estimation, particularly when inferring latent variable models from small amounts of data. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
ISSN: | 1045-9227 1941-0093 |
DOI: | 10.1109/TNN.2004.828755 |