Functional hierarchy of the angular gyrus and its underlying genetic architecture
The angular gyrus (AG), given its rich connectivity and its location where multisensory information converges, is a functionally and anatomically heterogeneous structure. Using the state‐of‐the‐art functional gradient approach and transcription‐neuroimaging association analysis, we sought to determi...
Saved in:
Published in | Human brain mapping Vol. 44; no. 7; pp. 2815 - 2828 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
01.05.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The angular gyrus (AG), given its rich connectivity and its location where multisensory information converges, is a functionally and anatomically heterogeneous structure. Using the state‐of‐the‐art functional gradient approach and transcription‐neuroimaging association analysis, we sought to determine whether there is an overarching hierarchical organization of the AG and if so, how it is modulated by the underlying genetic architecture. Resting‐state functional MRI data of 793 healthy subjects were obtained from discovery and validation datasets. Functional gradients of the AG were calculated based on the voxel‐wise AG‐to‐cerebrum functional connectivity patterns. Combined with the Allen Human Brain Atlas, we examined the spatial correlations between the AG functional gradient and gene expression. The dominant gradient topography showed a dorsoanterior–ventroposterior hierarchical organization of the AG, which was related to its intrinsic geometry. Concurrently, AG functional subdivisions corresponding to canonical functional networks (behavioral domains) were distributed along the dominant gradient in a hierarchical manner, that is, from the default mode network ( cognition) at one extreme to the visual and sensorimotor networks (perception and action) at the other extreme. Remarkably, we established a link between the AG dominant gradient and gene expression, with two gene sets strongly contributing to this link but diverging on their functional annotation and specific expression. Our findings represent a significant conceptual advance in AG functional organization, and may introduce novel approaches and testable questions to the investigation of AG function and anatomy in health and disease.
We comprehensively characterized the overarching hierarchical organization of the angular gyrus and its underlying genetic architecture by applying a combined approach of the functional gradient and transcription‐neuroimaging association to large‐scale discovery and validation rs‐fMRI datasets. |
---|---|
AbstractList | The angular gyrus (AG), given its rich connectivity and its location where multisensory information converges, is a functionally and anatomically heterogeneous structure. Using the state-of-the-art functional gradient approach and transcription-neuroimaging association analysis, we sought to determine whether there is an overarching hierarchical organization of the AG and if so, how it is modulated by the underlying genetic architecture. Resting-state functional MRI data of 793 healthy subjects were obtained from discovery and validation datasets. Functional gradients of the AG were calculated based on the voxel-wise AG-to-cerebrum functional connectivity patterns. Combined with the Allen Human Brain Atlas, we examined the spatial correlations between the AG functional gradient and gene expression. The dominant gradient topography showed a dorsoanterior-ventroposterior hierarchical organization of the AG, which was related to its intrinsic geometry. Concurrently, AG functional subdivisions corresponding to canonical functional networks (behavioral domains) were distributed along the dominant gradient in a hierarchical manner, that is, from the default mode network (abstract cognition) at one extreme to the visual and sensorimotor networks (perception and action) at the other extreme. Remarkably, we established a link between the AG dominant gradient and gene expression, with two gene sets strongly contributing to this link but diverging on their functional annotation and specific expression. Our findings represent a significant conceptual advance in AG functional organization, and may introduce novel approaches and testable questions to the investigation of AG function and anatomy in health and disease. The angular gyrus (AG), given its rich connectivity and its location where multisensory information converges, is a functionally and anatomically heterogeneous structure. Using the state-of-the-art functional gradient approach and transcription-neuroimaging association analysis, we sought to determine whether there is an overarching hierarchical organization of the AG and if so, how it is modulated by the underlying genetic architecture. Resting-state functional MRI data of 793 healthy subjects were obtained from discovery and validation datasets. Functional gradients of the AG were calculated based on the voxel-wise AG-to-cerebrum functional connectivity patterns. Combined with the Allen Human Brain Atlas, we examined the spatial correlations between the AG functional gradient and gene expression. The dominant gradient topography showed a dorsoanterior-ventroposterior hierarchical organization of the AG, which was related to its intrinsic geometry. Concurrently, AG functional subdivisions corresponding to canonical functional networks (behavioral domains) were distributed along the dominant gradient in a hierarchical manner, that is, from the default mode network (abstract cognition) at one extreme to the visual and sensorimotor networks (perception and action) at the other extreme. Remarkably, we established a link between the AG dominant gradient and gene expression, with two gene sets strongly contributing to this link but diverging on their functional annotation and specific expression. Our findings represent a significant conceptual advance in AG functional organization, and may introduce novel approaches and testable questions to the investigation of AG function and anatomy in health and disease.The angular gyrus (AG), given its rich connectivity and its location where multisensory information converges, is a functionally and anatomically heterogeneous structure. Using the state-of-the-art functional gradient approach and transcription-neuroimaging association analysis, we sought to determine whether there is an overarching hierarchical organization of the AG and if so, how it is modulated by the underlying genetic architecture. Resting-state functional MRI data of 793 healthy subjects were obtained from discovery and validation datasets. Functional gradients of the AG were calculated based on the voxel-wise AG-to-cerebrum functional connectivity patterns. Combined with the Allen Human Brain Atlas, we examined the spatial correlations between the AG functional gradient and gene expression. The dominant gradient topography showed a dorsoanterior-ventroposterior hierarchical organization of the AG, which was related to its intrinsic geometry. Concurrently, AG functional subdivisions corresponding to canonical functional networks (behavioral domains) were distributed along the dominant gradient in a hierarchical manner, that is, from the default mode network (abstract cognition) at one extreme to the visual and sensorimotor networks (perception and action) at the other extreme. Remarkably, we established a link between the AG dominant gradient and gene expression, with two gene sets strongly contributing to this link but diverging on their functional annotation and specific expression. Our findings represent a significant conceptual advance in AG functional organization, and may introduce novel approaches and testable questions to the investigation of AG function and anatomy in health and disease. The angular gyrus (AG), given its rich connectivity and its location where multisensory information converges, is a functionally and anatomically heterogeneous structure. Using the state‐of‐the‐art functional gradient approach and transcription‐neuroimaging association analysis, we sought to determine whether there is an overarching hierarchical organization of the AG and if so, how it is modulated by the underlying genetic architecture. Resting‐state functional MRI data of 793 healthy subjects were obtained from discovery and validation datasets. Functional gradients of the AG were calculated based on the voxel‐wise AG‐to‐cerebrum functional connectivity patterns. Combined with the Allen Human Brain Atlas, we examined the spatial correlations between the AG functional gradient and gene expression. The dominant gradient topography showed a dorsoanterior–ventroposterior hierarchical organization of the AG, which was related to its intrinsic geometry. Concurrently, AG functional subdivisions corresponding to canonical functional networks (behavioral domains) were distributed along the dominant gradient in a hierarchical manner, that is, from the default mode network (abstract cognition) at one extreme to the visual and sensorimotor networks (perception and action) at the other extreme. Remarkably, we established a link between the AG dominant gradient and gene expression, with two gene sets strongly contributing to this link but diverging on their functional annotation and specific expression. Our findings represent a significant conceptual advance in AG functional organization, and may introduce novel approaches and testable questions to the investigation of AG function and anatomy in health and disease. We comprehensively characterized the overarching hierarchical organization of the angular gyrus and its underlying genetic architecture by applying a combined approach of the functional gradient and transcription‐neuroimaging association to large‐scale discovery and validation rs‐fMRI datasets. The angular gyrus (AG), given its rich connectivity and its location where multisensory information converges, is a functionally and anatomically heterogeneous structure. Using the state‐of‐the‐art functional gradient approach and transcription‐neuroimaging association analysis, we sought to determine whether there is an overarching hierarchical organization of the AG and if so, how it is modulated by the underlying genetic architecture. Resting‐state functional MRI data of 793 healthy subjects were obtained from discovery and validation datasets. Functional gradients of the AG were calculated based on the voxel‐wise AG‐to‐cerebrum functional connectivity patterns. Combined with the Allen Human Brain Atlas, we examined the spatial correlations between the AG functional gradient and gene expression. The dominant gradient topography showed a dorsoanterior–ventroposterior hierarchical organization of the AG, which was related to its intrinsic geometry. Concurrently, AG functional subdivisions corresponding to canonical functional networks (behavioral domains) were distributed along the dominant gradient in a hierarchical manner, that is, from the default mode network ( cognition) at one extreme to the visual and sensorimotor networks (perception and action) at the other extreme. Remarkably, we established a link between the AG dominant gradient and gene expression, with two gene sets strongly contributing to this link but diverging on their functional annotation and specific expression. Our findings represent a significant conceptual advance in AG functional organization, and may introduce novel approaches and testable questions to the investigation of AG function and anatomy in health and disease. We comprehensively characterized the overarching hierarchical organization of the angular gyrus and its underlying genetic architecture by applying a combined approach of the functional gradient and transcription‐neuroimaging association to large‐scale discovery and validation rs‐fMRI datasets. |
Author | Zhu, Jiajia Yu, Yongqiang Cai, Huanhuan Liu, Siyu Wang, Chunli Chen, Jingyao Song, Yu |
AuthorAffiliation | 2 Research Center of Clinical Medical Imaging, Anhui Province Hefei China 3 Anhui Provincial Institute of Translational Medicine Hefei China 1 Department of Radiology The First Affiliated Hospital of Anhui Medical University Hefei China 4 Department of Clinical Laboratory The First Affiliated Hospital of Anhui Medical University Hefei China |
AuthorAffiliation_xml | – name: 3 Anhui Provincial Institute of Translational Medicine Hefei China – name: 2 Research Center of Clinical Medical Imaging, Anhui Province Hefei China – name: 1 Department of Radiology The First Affiliated Hospital of Anhui Medical University Hefei China – name: 4 Department of Clinical Laboratory The First Affiliated Hospital of Anhui Medical University Hefei China |
Author_xml | – sequence: 1 givenname: Yu surname: Song fullname: Song, Yu organization: Anhui Provincial Institute of Translational Medicine – sequence: 2 givenname: Chunli surname: Wang fullname: Wang, Chunli organization: The First Affiliated Hospital of Anhui Medical University – sequence: 3 givenname: Huanhuan surname: Cai fullname: Cai, Huanhuan organization: Anhui Provincial Institute of Translational Medicine – sequence: 4 givenname: Jingyao surname: Chen fullname: Chen, Jingyao organization: Anhui Provincial Institute of Translational Medicine – sequence: 5 givenname: Siyu surname: Liu fullname: Liu, Siyu organization: Anhui Provincial Institute of Translational Medicine – sequence: 6 givenname: Jiajia orcidid: 0000-0001-7343-6241 surname: Zhu fullname: Zhu, Jiajia email: zhujiajiagraduate@163.com organization: Anhui Provincial Institute of Translational Medicine – sequence: 7 givenname: Yongqiang orcidid: 0000-0001-8977-2215 surname: Yu fullname: Yu, Yongqiang email: cjr.yuyongqiang@vip.163.com organization: Anhui Provincial Institute of Translational Medicine |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36852603$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kUtv1TAQhS1URB-w4A-gSGxgkdZ2HDteoVL1gVSEkGBtOc4kceXrFNsB5d_X4d5WULWr8cjfOTo6c4j2_OQBobcEHxOM6cnYbo4pp0y8QAcES1FiIqu99c3rUjJB9tFhjDcYE1Jj8grtV7ypKcfVAfp-MXuT7OS1K0YLQQczLsXUF2mEQvthdjoUwxLmmLeusCkWs-8guMX6oRjAQ7KmWFU2gUlzgNfoZa9dhDe7eYR-Xpz_OLsqr79dfjk7vS4NY0yUUkLb6Fqw3jR9L7mmXBNsKtFh0ER2THPd9xzXILuu1nXDaWc4ZpUQ0NO2rY7Qp63v7dxuoDPgU9BO3Qa70WFRk7bq_x9vRzVMv1WurJFY0uzwYecQpl8zxKQ2NhpwTnuY5qioaLDgrKnrjL5_hN5Mc8ilrZSUuKKCy0y9-zfSQ5b7ujNwsgVMmGIM0Ctjk17rzwmty9HWdFTlg6q_B82Kj48U96ZPsTv3P9bB8jyorj5_3SruAC2hsKM |
CitedBy_id | crossref_primary_10_1007_s00429_023_02672_5 crossref_primary_10_1016_j_jad_2024_09_020 crossref_primary_10_1093_cercor_bhae495 crossref_primary_10_1093_cercor_bhae298 crossref_primary_10_1186_s12915_024_02039_0 crossref_primary_10_3389_fnins_2024_1392002 crossref_primary_10_1016_j_jad_2025_02_021 crossref_primary_10_1007_s12035_024_03962_7 crossref_primary_10_1016_j_pnpbp_2024_111120 crossref_primary_10_1016_j_cortex_2024_07_005 crossref_primary_10_1016_j_neuroimage_2023_120415 crossref_primary_10_1038_s42003_023_05029_0 crossref_primary_10_1093_cercor_bhaf029 crossref_primary_10_3390_brainsci13111508 |
Cites_doi | 10.1016/j.brs.2017.02.011 10.1038/s41586-022-04554-y 10.1016/j.neuroimage.2008.09.003 10.1073/pnas.2024448118 10.1038/nmeth.1635 10.1523/JNEUROSCI.4705-14.2015 10.1371/journal.pcbi.1000808 10.3390/ijms21103566 10.1016/j.neuroimage.2006.06.054 10.1093/nar/gkp427 10.1016/j.biopsych.2020.02.007 10.1016/j.neuroimage.2019.01.011 10.1002/hbm.26031 10.1038/sdata.2016.110 10.1002/hbm.26099 10.1007/978-1-4939-9658-2_3 10.1016/j.tics.2017.11.002 10.1152/jn.00338.2011 10.1016/j.cub.2005.02.037 10.3389/fpsyt.2018.00449 10.1038/s41380-022-01519-5 10.1007/s00429-008-0195-z 10.1073/pnas.0500334102 10.1109/TPAMI.2006.184 10.1093/cercor/bhy118 10.1002/hbm.23341 10.1523/JNEUROSCI.3069-13.2014 10.1523/JNEUROSCI.1239-18.2018 10.1002/hbm.23675 10.1016/j.neuroscience.2020.05.032 10.1093/cercor/bhw157 10.1021/acschemneuro.9b00599 10.1073/pnas.1608282113 10.1016/j.neuropsychologia.2011.04.035 10.1093/cercor/bhac003 10.1016/j.neuroimage.2018.08.055 10.1007/7854_2013_255 10.1038/nature11405 10.1016/j.neuroimage.2016.11.052 10.1038/nature11896 10.1016/j.neuroimage.2012.07.045 10.1038/s41467-019-08944-1 10.1016/j.scib.2022.01.002 10.1523/JNEUROSCI.4488-13.2014 10.1148/radiol.14132388 10.1126/science.1255905 10.1093/cercor/bht098 10.1016/j.neuroimage.2007.07.007 10.1073/pnas.0811168106 10.1093/brain/awab084 10.1146/annurev-physiol-022516-034406 10.1152/jn.90463.2008 10.1124/pharmrev.120.000086 10.1093/nar/gkq130 10.1038/s41467-018-03811-x 10.1016/j.biopsych.2019.12.005 10.1124/mol.115.102210 10.1016/j.neuroimage.2019.116290 10.1677/JME-10-0014 10.1016/j.tins.2021.01.006 10.1073/pnas.0701519104 10.1111/bdi.12966 10.1016/j.tics.2018.10.005 10.1007/s12021-016-9299-4 10.1002/hbm.25362 10.1124/mol.112.083352 10.1038/nrn2201 10.1038/nchembio.1611 10.1016/j.neuron.2017.10.006 10.1016/bs.apcsb.2015.10.006 10.1093/cercor/bhq011 10.1016/j.neuroimage.2020.116960 10.1038/s41562-021-01082-z 10.1073/pnas.1803667115 10.3345/kjp.2014.57.1.1 10.1038/s41593-020-00711-6 10.7554/eLife.36652 10.1017/S0033291721005523 10.1016/j.cortex.2022.03.016 10.1093/cercor/bhab335 10.1016/j.pnpbp.2018.02.003 10.1016/j.immuni.2020.02.017 10.1002/wics.51 10.1146/annurev-psych-120709-145406 10.1177/1073858412440596 10.1038/sdata.2018.134 10.1196/annals.1440.011 10.1523/JNEUROSCI.5102-10.2011 10.1038/nrn2513 |
ContentType | Journal Article |
Copyright | 2023 The Authors. published by Wiley Periodicals LLC. 2023 The Authors. Human Brain Mapping published by Wiley Periodicals LLC. 2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2023 The Authors. published by Wiley Periodicals LLC. – notice: 2023 The Authors. Human Brain Mapping published by Wiley Periodicals LLC. – notice: 2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QR 7TK 7U7 8FD C1K FR3 K9. P64 7X8 5PM |
DOI | 10.1002/hbm.26247 |
DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Chemoreception Abstracts Neurosciences Abstracts Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Toxicology Abstracts ProQuest Health & Medical Complete (Alumni) Chemoreception Abstracts Engineering Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic Technology Research Database CrossRef |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
DocumentTitleAlternate | Song et al |
EISSN | 1097-0193 |
EndPage | 2828 |
ExternalDocumentID | PMC10089092 36852603 10_1002_hbm_26247 HBM26247 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Outstanding Youth Support Project of Anhui Province Universities funderid: gxyqZD2022026 – fundername: Scientific Research Key Project of Anhui Province Universities funderid: 2022AH051135 – fundername: Scientific Research Foundation of Anhui Medical University funderid: 2022xkj143 – fundername: Anhui University Collaborative Innovation Project funderid: GXXT‐2021‐065 – fundername: National Natural Science Foundation of China funderid: 82071905 – fundername: Scientific Research Foundation of Anhui Medical University grantid: 2022xkj143 – fundername: Outstanding Youth Support Project of Anhui Province Universities grantid: gxyqZD2022026 – fundername: ; grantid: 82071905 – fundername: Scientific Research Key Project of Anhui Province Universities grantid: 2022AH051135 – fundername: Anhui University Collaborative Innovation Project grantid: GXXT‐2021‐065 |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 7X7 8-0 8-1 8-3 8-4 8-5 8FI 8FJ 8UM 930 A03 AAESR AAEVG AAHHS AANHP AAONW AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABIVO ABJNI ABPVW ABUWG ACBWZ ACCFJ ACCMX ACGFS ACIWK ACPOU ACPRK ACRPL ACSCC ACXQS ACYXJ ADBBV ADEOM ADIZJ ADMGS ADNMO ADPDF ADXAS ADZOD AEEZP AEIMD AENEX AEQDE AEUQT AFBPY AFGKR AFKRA AFPKN AFPWT AFRAH AFZJQ AHMBA AIURR AIWBW AJBDE AJXKR ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BENPR BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CCPQU CS3 D-E D-F DCZOG DPXWK DR1 DR2 DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE FYUFA G-S G.N GAKWD GNP GODZA GROUPED_DOAJ H.T H.X HBH HF~ HHY HHZ HMCUK HVGLF HZ~ IAO IHR ITC IX1 J0M JPC KQQ L7B LAW LC2 LC3 LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6M MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OK1 OVD OVEED P2P P2W P2X P4D PALCI PIMPY PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RPM RWD RWI RX1 RYL SAMSI SUPJJ SV3 TEORI UB1 UKHRP V2E W8V W99 WBKPD WIB WIH WIK WIN WJL WNSPC WOHZO WQJ WRC WUP WXSBR WYISQ XG1 XSW XV2 ZZTAW ~IA ~WT AAFWJ AAYXX AGQPQ CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7QR 7TK 7U7 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K FR3 K9. P64 7X8 5PM |
ID | FETCH-LOGICAL-c4447-99eb8a574fc8ff96a26a10c37d0ea19d4a6aff605e9dd5a5862dc604377ef2bb3 |
IEDL.DBID | DR2 |
ISSN | 1065-9471 1097-0193 |
IngestDate | Thu Aug 21 18:38:32 EDT 2025 Fri Jul 11 16:58:39 EDT 2025 Sat Jul 26 02:18:20 EDT 2025 Wed Feb 19 02:24:02 EST 2025 Tue Jul 01 01:11:11 EDT 2025 Thu Apr 24 23:13:26 EDT 2025 Fri Feb 21 05:36:41 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | functional MRI functional gradient hierarchical organization angular gyrus gene expression |
Language | English |
License | Attribution 2023 The Authors. Human Brain Mapping published by Wiley Periodicals LLC. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4447-99eb8a574fc8ff96a26a10c37d0ea19d4a6aff605e9dd5a5862dc604377ef2bb3 |
Notes | Yu Song and Chunli Wang have contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-8977-2215 0000-0001-7343-6241 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.26247 |
PMID | 36852603 |
PQID | 2799032769 |
PQPubID | 996345 |
PageCount | 14 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_10089092 proquest_miscellaneous_2780764855 proquest_journals_2799032769 pubmed_primary_36852603 crossref_citationtrail_10_1002_hbm_26247 crossref_primary_10_1002_hbm_26247 wiley_primary_10_1002_hbm_26247_HBM26247 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2023 |
PublicationDateYYYYMMDD | 2023-05-01 |
PublicationDate_xml | – month: 05 year: 2023 text: May 2023 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: United States – name: San Antonio |
PublicationTitle | Human brain mapping |
PublicationTitleAlternate | Hum Brain Mapp |
PublicationYear | 2023 |
Publisher | John Wiley & Sons, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc |
References | 2015; 35 2009; 44 2007; 104 2021; 23 2020; 440 2022b; 67 2006; 33 2019; 10 2011; 62 2008; 9 2020; 206 2014; 24 2018; 84 2020; 11 2016; 103 2017; 154 2015; 348 2012; 489 2008; 100 2021; 73 2007; 38 2018; 7 2013; 19 2018; 9 2010; 20 2021; 32 2018; 5 2008; 1124 2020; 52 2005; 102 2017; 38 2019; 23 2006; 28 2017; 79 2021; 118 2007; 8 2016; 113 2014; 16 2014; 57 2019; 29 2022; 32 2020; 88 2010; 2 2022; 604 2018; 38 2022; 1‐11 2010; 6 2020; 218 2016; 89 2014; 10 2012; 63 2022a; 27 2010; 38 2021; 5 2022; 152 2021; 42 2021; 44 2018; 183 2013; 83 2011; 31 2014; 272 2022; 43 2021; 144 2022; 44 2019; 2034 2018; 22 2016; 14 2011; 8 2019; 189 2010; 45 2017; 96 2016; 3 2011; 106 2017; 10 2018; 115 2020; 23 2008; 212 2020; 21 2013; 494 2005; 15 2011; 49 2016; 26 2014; 34 2009; 37 2009; 106 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 e_1_2_8_3_1 e_1_2_8_81_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_89_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_87_1 e_1_2_8_62_1 e_1_2_8_85_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_70_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_69_1 e_1_2_8_2_1 e_1_2_8_80_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_67_1 e_1_2_8_88_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_65_1 e_1_2_8_86_1 e_1_2_8_63_1 e_1_2_8_84_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_82_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 e_1_2_8_79_1 e_1_2_8_90_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_77_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_75_1 e_1_2_8_52_1 e_1_2_8_73_1 e_1_2_8_50_1 e_1_2_8_71_1 |
References_xml | – volume: 43 start-page: 5562 issue: 18 year: 2022 end-page: 5578 article-title: Transcriptional substrates underlying functional connectivity profiles of subregions within the human sensorimotor cortex publication-title: Human Brain Mapping – volume: 9 start-page: 1428 issue: 1 year: 2018 article-title: Gene expression links functional networks across cortex and striatum publication-title: Nature Communications – volume: 1‐11 start-page: 614 year: 2022 end-page: 624 article-title: Multimodal meta‐analysis of structural gray matter, neurocognitive and social cognitive fMRI findings in schizophrenia patients publication-title: Psychological Medicine – volume: 15 start-page: R154 issue: 5 year: 2005 end-page: R158 article-title: Neurotransmitters publication-title: Current Biology – volume: 33 start-page: 430 issue: 2 year: 2006 end-page: 448 article-title: The human inferior parietal cortex: Cytoarchitectonic parcellation and interindividual variability publication-title: NeuroImage – volume: 104 start-page: 10240 issue: 24 year: 2007 end-page: 10245 article-title: Network structure of cerebral cortex shapes functional connectivity on multiple time scales publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 67 start-page: 1049 year: 2022b end-page: 1061 article-title: Development of functional connectome gradients during childhood and adolescence publication-title: Science Bulletin – volume: 84 start-page: 39 year: 2018 end-page: 49 article-title: Neural correlates of working memory in first episode and recurrent depression: An fMRI study publication-title: Progress in Neuro‐Psychopharmacology & Biological Psychiatry – volume: 42 start-page: 2236 issue: 7 year: 2021 end-page: 2249 article-title: Correlation between cortical gene expression and resting‐state functional network centrality in healthy young adults publication-title: Human Brain Mapping – volume: 489 start-page: 391 issue: 7416 year: 2012 end-page: 399 article-title: An anatomically comprehensive atlas of the adult human brain transcriptome publication-title: Nature – volume: 348 start-page: 1241 issue: 6240 year: 2015 end-page: 1244 article-title: BRAIN NETWORKS. Correlated gene expression supports synchronous activity in BRAIN networks publication-title: Science – volume: 6 issue: 6 year: 2010 article-title: The organization of local and distant functional connectivity in the human brain publication-title: PLoS Computational Biology – volume: 206 year: 2020 article-title: A set of functionally‐defined brain regions with improved representation of the subcortex and cerebellum publication-title: NeuroImage – volume: 102 start-page: 7426 issue: 21 year: 2005 end-page: 7431 article-title: Geometric diffusions as a tool for harmonic analysis and structure definition of data: Diffusion maps publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 23 start-page: 1421 issue: 11 year: 2020 end-page: 1432 article-title: Topographic organization of the human subcortex unveiled with functional connectivity gradients publication-title: Nature Neuroscience – volume: 96 start-page: 680 issue: 3 year: 2017 end-page: 696 article-title: Transcellular nanoalignment of synaptic function publication-title: Neuron – volume: 44 start-page: 790 year: 2022 end-page: 800 article-title: Functional connectivity gradients of the insula to different cerebral systems publication-title: Human Brain Mapping – volume: 1124 start-page: 1 year: 2008 end-page: 38 article-title: The brain's default network: Anatomy, function, and relevance to disease publication-title: Annals of the New York Academy of Sciences – volume: 9 start-page: 947 issue: 12 year: 2008 end-page: 957 article-title: Why do many psychiatric disorders emerge during adolescence? publication-title: Nature Reviews. Neuroscience – volume: 144 start-page: 1787 issue: 6 year: 2021 end-page: 1798 article-title: Regional brain iron and gene expression provide insights into neurodegeneration in Parkinson's disease publication-title: Brain – volume: 52 start-page: 464 issue: 3 year: 2020 end-page: 474 article-title: Neuro‐immune interactions in the tissues publication-title: Immunity – volume: 189 start-page: 353 year: 2019 end-page: 367 article-title: A practical guide to linking brain‐wide gene expression and neuroimaging data publication-title: NeuroImage – volume: 63 start-page: 641 issue: 2 year: 2012 end-page: 652 article-title: Tractography‐based parcellation of the human left inferior parietal lobule publication-title: NeuroImage – volume: 89 start-page: 273 issue: 2 year: 2016 end-page: 286 article-title: Roles for regulator of G protein signaling proteins in synaptic signaling and plasticity publication-title: Molecular Pharmacology – volume: 5 start-page: 1240 issue: 9 year: 2021 end-page: 1250 article-title: Mapping gene transcription and neurocognition across human neocortex publication-title: Nature Human Behaviour – volume: 34 start-page: 5842 issue: 17 year: 2014 end-page: 5854 article-title: Developmental changes in the organization of functional connections between the basal ganglia and cerebral cortex publication-title: The Journal of Neuroscience – volume: 27 start-page: 1384 year: 2022a end-page: 1393 article-title: Connectome gradient dysfunction in major depression and its association with gene expression profiles and treatment outcomes publication-title: Molecular Psychiatry – volume: 113 start-page: 12574 issue: 44 year: 2016 end-page: 12579 article-title: Situating the default‐mode network along a principal gradient of macroscale cortical organization publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 88 start-page: 248 issue: 3 year: 2020 end-page: 259 article-title: Schizotypy‐related magnetization of cortex in healthy adolescence is colocated with expression of schizophrenia‐related genes publication-title: Biological Psychiatry – volume: 440 start-page: 337 year: 2020 end-page: 359 article-title: Ion channels involvement in neurodevelopmental disorders publication-title: Neuroscience – volume: 79 start-page: 619 year: 2017 end-page: 643 article-title: Microglia in physiology and disease publication-title: Annual Review of Physiology – volume: 14 start-page: 339 issue: 3 year: 2016 end-page: 351 article-title: DPABI: Data Processing & Analysis for (resting‐state) brain imaging publication-title: Neuroinformatics – volume: 73 start-page: 278 issue: 1 year: 2021 end-page: 309 article-title: Subcellular organization of the cAMP signaling pathway publication-title: Pharmacological Reviews – volume: 2 start-page: 97 issue: 1 year: 2010 end-page: 106 article-title: Partial least squares regression and projection on latent structure regression (PLS regression) publication-title: WIREs Computational Statistics – volume: 26 start-page: 3508 issue: 8 year: 2016 end-page: 3526 article-title: The human Brainnetome atlas: A new brain atlas based on connectional architecture publication-title: Cerebral Cortex – volume: 103 start-page: 97 year: 2016 end-page: 136 article-title: Ion channels in neurological disorders publication-title: Advances in Protein Chemistry and Structural Biology – volume: 38 start-page: 10438 issue: 49 year: 2018 end-page: 10443 article-title: Specifying a causal role for angular gyrus in autobiographical memory publication-title: The Journal of Neuroscience – volume: 2034 start-page: 27 year: 2019 end-page: 40 article-title: Physiology of microglia publication-title: Methods in Molecular Biology – volume: 10 start-page: 1022 issue: 1 year: 2019 article-title: Atypical functional connectome hierarchy in autism publication-title: Nature Communications – volume: 32 start-page: 5132 year: 2022 end-page: 5144 article-title: Frequency‐dependent genetic modulation of neuronal oscillations: A combined transcriptome and resting‐state functional MRI study publication-title: Cerebral Cortex – volume: 10 start-page: 624 issue: 3 year: 2017 end-page: 629 article-title: Reduced multimodal integration of memory features following continuous theta burst stimulation of angular gyrus publication-title: Brain Stimulation – volume: 44 start-page: 452 issue: 6 year: 2021 end-page: 463 article-title: A unifying account of angular gyrus contributions to episodic and semantic cognition publication-title: Trends in Neurosciences – volume: 22 start-page: 21 issue: 1 year: 2018 end-page: 31 article-title: Large‐scale gradients in human cortical organization publication-title: Trends in Cognitive Sciences – volume: 31 start-page: 4087 issue: 11 year: 2011 end-page: 4100 article-title: Diffusion‐weighted imaging tractography‐based parcellation of the human parietal cortex and comparison with human and macaque resting‐state functional connectivity publication-title: The Journal of Neuroscience – volume: 604 start-page: 525 issue: 7906 year: 2022 end-page: 533 article-title: Brain charts for the human lifespan publication-title: Nature – volume: 45 start-page: 1 issue: 1 year: 2010 end-page: 8 article-title: Imaging of persistent cAMP signaling by internalized G protein‐coupled receptors publication-title: Journal of Molecular Endocrinology – volume: 8 start-page: 700 issue: 9 year: 2007 end-page: 711 article-title: Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging publication-title: Nature Reviews. Neuroscience – volume: 3 year: 2016 article-title: A phenome‐wide examination of neural and cognitive function publication-title: Scientific Data – volume: 118 issue: 28 year: 2021 article-title: Shifting gradients of macroscale cortical organization mark the transition from childhood to adolescence publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 38 start-page: 4218 issue: 13 year: 2010 end-page: 4230 article-title: Analytical approaches to RNA profiling data for the identification of genes enriched in specific cells publication-title: Nucleic Acids Research – volume: 5 year: 2018 article-title: Structural and functional brain scans from the cross‐sectional Southwest University adult lifespan dataset publication-title: Scientific Data – volume: 35 start-page: 15230 issue: 46 year: 2015 end-page: 15239 article-title: Automatic and controlled semantic retrieval: TMS reveals distinct contributions of posterior middle temporal gyrus and angular gyrus publication-title: The Journal of Neuroscience – volume: 106 start-page: 2035 issue: 6 year: 2009 end-page: 2040 article-title: Predicting human resting‐state functional connectivity from structural connectivity publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 29 start-page: 2470 issue: 6 year: 2019 end-page: 2481 article-title: Contrasting semantic versus inhibitory processing in the angular gyrus: An fMRI study publication-title: Cerebral Cortex – volume: 152 start-page: 59 year: 2022 end-page: 73 article-title: Molecular basis underlying functional connectivity of fusiform gyrus subregions: A transcriptome‐neuroimaging spatial correlation study publication-title: Cortex – volume: 272 start-page: 29 issue: 1 year: 2014 end-page: 49 article-title: Resting‐state functional MR imaging: A new window to the brain publication-title: Radiology – volume: 23 start-page: 130 issue: 2 year: 2021 end-page: 140 article-title: Altered cerebral perfusion in bipolar disorder: A pCASL MRI study publication-title: Bipolar Disorders – volume: 32 start-page: 2063 year: 2021 end-page: 2078 article-title: Genetic architecture underlying differential resting‐state functional connectivity of subregions within the human visual cortex publication-title: Cerebral Cortex – volume: 38 start-page: 4788 issue: 9 year: 2017 end-page: 4805 article-title: Specifying the brain anatomy underlying temporo‐parietal junction activations for theory of mind: A review using probabilistic atlases from different imaging modalities publication-title: Human Brain Mapping – volume: 115 start-page: 10154 issue: 40 year: 2018 end-page: 10159 article-title: Anatomical and microstructural determinants of hippocampal subfield functional connectome embedding publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 11 start-page: 567 issue: 4 year: 2020 end-page: 578 article-title: G protein‐coupled glutamate and GABA receptors form complexes and mutually modulate their signals publication-title: ACS Chemical Neuroscience – volume: 21 issue: 10 year: 2020 article-title: Expression of genes involved in axon guidance: How much have we learned? publication-title: International Journal of Molecular Sciences – volume: 37 start-page: W305 year: 2009 end-page: W311 article-title: ToppGene suite for gene list enrichment analysis and candidate gene prioritization publication-title: Nucleic Acids Research – volume: 38 start-page: 95 issue: 1 year: 2007 end-page: 113 article-title: A fast diffeomorphic image registration algorithm publication-title: NeuroImage – volume: 34 start-page: 1420 issue: 4 year: 2014 end-page: 1431 article-title: Cell type‐specific expression analysis to identify putative cellular mechanisms for neurogenetic disorders publication-title: The Journal of Neuroscience – volume: 28 start-page: 1393 issue: 9 year: 2006 end-page: 1403 article-title: Diffusion maps and coarse‐graining: A unified framework for dimensionality reduction, graph partitioning, and data set parameterization publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 16 start-page: 19 year: 2014 end-page: 48 article-title: Signaling mechanisms of axon guidance and early synaptogenesis publication-title: Current Topics in Behavioral Neurosciences – volume: 88 start-page: 40 issue: 1 year: 2020 end-page: 50 article-title: Development of brain networks in utero: Relevance for common neural disorders publication-title: Biological Psychiatry – volume: 38 start-page: 41 issue: 1 year: 2017 end-page: 52 article-title: Angular default mode network connectivity across working memory load publication-title: Human Brain Mapping – volume: 10 start-page: 700 issue: 9 year: 2014 end-page: 706 article-title: Endosomal generation of cAMP in GPCR signaling publication-title: Nature Chemical Biology – volume: 20 start-page: 2636 issue: 11 year: 2010 end-page: 2646 article-title: Dissociable connectivity within human angular gyrus and intraparietal sulcus: Evidence from functional and structural connectivity publication-title: Cerebral Cortex – volume: 19 start-page: 43 issue: 1 year: 2013 end-page: 61 article-title: The angular gyrus: Multiple functions and multiple subdivisions publication-title: The Neuroscientist – volume: 83 start-page: 746 issue: 4 year: 2013 end-page: 752 article-title: Ionotropic glutamate receptors: Regulation by G‐protein‐coupled receptors publication-title: Molecular Pharmacology – volume: 106 start-page: 1125 issue: 3 year: 2011 end-page: 1165 article-title: The organization of the human cerebral cortex estimated by intrinsic functional connectivity publication-title: Journal of Neurophysiology – volume: 7 year: 2018 article-title: Functional gradients of the cerebellum publication-title: eLife – volume: 212 start-page: 481 issue: 6 year: 2008 end-page: 495 article-title: The human inferior parietal lobule in stereotaxic space publication-title: Brain Structure & Function – volume: 49 start-page: 2592 issue: 9 year: 2011 end-page: 2608 article-title: Functional dissociations between four basic arithmetic operations in the human posterior parietal cortex: A cytoarchitectonic mapping study publication-title: Neuropsychologia – volume: 9 year: 2018 article-title: Gray matter structural alterations in social anxiety disorder: A voxel‐based meta‐analysis publication-title: Frontiers in Psychiatry – volume: 57 start-page: 1 issue: 1 year: 2014 end-page: 18 article-title: Channelopathies publication-title: Korean The Journal of Pediatrics – volume: 100 start-page: 1740 issue: 4 year: 2008 end-page: 1748 article-title: Intrinsic functional relations between human cerebral cortex and thalamus publication-title: Journal of Neurophysiology – volume: 154 start-page: 169 year: 2017 end-page: 173 article-title: Towards a consensus regarding global signal regression for resting state functional connectivity MRI publication-title: NeuroImage – volume: 24 start-page: 2436 issue: 9 year: 2014 end-page: 2448 article-title: Connectivity architecture and subdivision of the human inferior parietal cortex revealed by diffusion MRI publication-title: Cerebral Cortex – volume: 23 start-page: 34 issue: 1 year: 2019 end-page: 50 article-title: Bridging the gap between connectome and transcriptome publication-title: Trends in Cognitive Sciences – volume: 218 year: 2020 article-title: The thalamic functional gradient and its relationship to structural basis and cognitive relevance publication-title: NeuroImage – volume: 44 start-page: 563 issue: 2 year: 2009 end-page: 568 article-title: The role of the angular gyrus in the modulation of visuospatial attention by the mental number line publication-title: NeuroImage – volume: 494 start-page: 185 issue: 7436 year: 2013 end-page: 194 article-title: Molecular signatures of G‐protein‐coupled receptors publication-title: Nature – volume: 183 start-page: 716 year: 2018 end-page: 733 article-title: Characterizing the functional connectivity diversity of the insula cortex: Subregions, diversity curves and behavior publication-title: NeuroImage – volume: 8 start-page: 665 issue: 8 year: 2011 end-page: 670 article-title: Large‐scale automated synthesis of human functional neuroimaging data publication-title: Nature Methods – volume: 62 start-page: 103 year: 2011 end-page: 134 article-title: The neural bases of social cognition and story comprehension publication-title: Annual Review of Psychology – ident: e_1_2_8_83_1 doi: 10.1016/j.brs.2017.02.011 – ident: e_1_2_8_7_1 doi: 10.1038/s41586-022-04554-y – ident: e_1_2_8_14_1 doi: 10.1016/j.neuroimage.2008.09.003 – ident: e_1_2_8_21_1 doi: 10.1073/pnas.2024448118 – ident: e_1_2_8_82_1 doi: 10.1038/nmeth.1635 – ident: e_1_2_8_20_1 doi: 10.1523/JNEUROSCI.4705-14.2015 – ident: e_1_2_8_61_1 doi: 10.1371/journal.pcbi.1000808 – ident: e_1_2_8_39_1 doi: 10.3390/ijms21103566 – ident: e_1_2_8_13_1 doi: 10.1016/j.neuroimage.2006.06.054 – ident: e_1_2_8_15_1 doi: 10.1093/nar/gkp427 – ident: e_1_2_8_64_1 doi: 10.1016/j.biopsych.2020.02.007 – ident: e_1_2_8_4_1 doi: 10.1016/j.neuroimage.2019.01.011 – ident: e_1_2_8_62_1 doi: 10.1002/hbm.26031 – ident: e_1_2_8_50_1 doi: 10.1038/sdata.2016.110 – ident: e_1_2_8_73_1 doi: 10.1002/hbm.26099 – ident: e_1_2_8_26_1 doi: 10.1007/978-1-4939-9658-2_3 – ident: e_1_2_8_36_1 doi: 10.1016/j.tics.2017.11.002 – ident: e_1_2_8_84_1 doi: 10.1152/jn.00338.2011 – ident: e_1_2_8_37_1 doi: 10.1016/j.cub.2005.02.037 – ident: e_1_2_8_74_1 doi: 10.3389/fpsyt.2018.00449 – ident: e_1_2_8_77_1 doi: 10.1038/s41380-022-01519-5 – ident: e_1_2_8_12_1 doi: 10.1007/s00429-008-0195-z – ident: e_1_2_8_18_1 doi: 10.1073/pnas.0500334102 – ident: e_1_2_8_41_1 doi: 10.1109/TPAMI.2006.184 – ident: e_1_2_8_42_1 doi: 10.1093/cercor/bhy118 – ident: e_1_2_8_68_1 doi: 10.1002/hbm.23341 – ident: e_1_2_8_28_1 doi: 10.1523/JNEUROSCI.3069-13.2014 – ident: e_1_2_8_9_1 doi: 10.1523/JNEUROSCI.1239-18.2018 – ident: e_1_2_8_58_1 doi: 10.1002/hbm.23675 – ident: e_1_2_8_19_1 doi: 10.1016/j.neuroscience.2020.05.032 – ident: e_1_2_8_23_1 doi: 10.1093/cercor/bhw157 – ident: e_1_2_8_57_1 doi: 10.1021/acschemneuro.9b00599 – ident: e_1_2_8_45_1 doi: 10.1073/pnas.1608282113 – ident: e_1_2_8_55_1 doi: 10.1016/j.neuropsychologia.2011.04.035 – ident: e_1_2_8_43_1 doi: 10.1093/cercor/bhac003 – ident: e_1_2_8_66_1 doi: 10.1016/j.neuroimage.2018.08.055 – ident: e_1_2_8_52_1 doi: 10.1007/7854_2013_255 – ident: e_1_2_8_31_1 doi: 10.1038/nature11405 – ident: e_1_2_8_47_1 doi: 10.1016/j.neuroimage.2016.11.052 – ident: e_1_2_8_69_1 doi: 10.1038/nature11896 – ident: e_1_2_8_72_1 doi: 10.1016/j.neuroimage.2012.07.045 – ident: e_1_2_8_34_1 doi: 10.1038/s41467-019-08944-1 – ident: e_1_2_8_78_1 doi: 10.1016/j.scib.2022.01.002 – ident: e_1_2_8_79_1 doi: 10.1523/JNEUROSCI.4488-13.2014 – ident: e_1_2_8_6_1 doi: 10.1148/radiol.14132388 – ident: e_1_2_8_51_1 doi: 10.1126/science.1255905 – ident: e_1_2_8_56_1 doi: 10.1093/cercor/bht098 – ident: e_1_2_8_5_1 doi: 10.1016/j.neuroimage.2007.07.007 – ident: e_1_2_8_33_1 doi: 10.1073/pnas.0811168106 – ident: e_1_2_8_63_1 doi: 10.1093/brain/awab084 – ident: e_1_2_8_76_1 doi: 10.1146/annurev-physiol-022516-034406 – ident: e_1_2_8_89_1 doi: 10.1152/jn.90463.2008 – ident: e_1_2_8_86_1 doi: 10.1124/pharmrev.120.000086 – ident: e_1_2_8_22_1 doi: 10.1093/nar/gkq130 – ident: e_1_2_8_3_1 doi: 10.1038/s41467-018-03811-x – ident: e_1_2_8_54_1 doi: 10.1016/j.biopsych.2019.12.005 – ident: e_1_2_8_27_1 doi: 10.1124/mol.115.102210 – ident: e_1_2_8_60_1 doi: 10.1016/j.neuroimage.2019.116290 – ident: e_1_2_8_11_1 doi: 10.1677/JME-10-0014 – ident: e_1_2_8_35_1 doi: 10.1016/j.tins.2021.01.006 – ident: e_1_2_8_32_1 doi: 10.1073/pnas.0701519104 – ident: e_1_2_8_87_1 doi: 10.1111/bdi.12966 – ident: e_1_2_8_24_1 doi: 10.1016/j.tics.2018.10.005 – ident: e_1_2_8_80_1 doi: 10.1007/s12021-016-9299-4 – ident: e_1_2_8_90_1 doi: 10.1002/hbm.25362 – ident: e_1_2_8_53_1 doi: 10.1124/mol.112.083352 – ident: e_1_2_8_25_1 doi: 10.1038/nrn2201 – ident: e_1_2_8_70_1 doi: 10.1038/nchembio.1611 – ident: e_1_2_8_8_1 doi: 10.1016/j.neuron.2017.10.006 – ident: e_1_2_8_40_1 doi: 10.1016/bs.apcsb.2015.10.006 – ident: e_1_2_8_67_1 doi: 10.1093/cercor/bhq011 – ident: e_1_2_8_81_1 doi: 10.1016/j.neuroimage.2020.116960 – ident: e_1_2_8_30_1 doi: 10.1038/s41562-021-01082-z – ident: e_1_2_8_71_1 doi: 10.1073/pnas.1803667115 – ident: e_1_2_8_38_1 doi: 10.3345/kjp.2014.57.1.1 – ident: e_1_2_8_65_1 doi: 10.1038/s41593-020-00711-6 – ident: e_1_2_8_29_1 doi: 10.7554/eLife.36652 – ident: e_1_2_8_49_1 doi: 10.1017/S0033291721005523 – ident: e_1_2_8_16_1 doi: 10.1016/j.cortex.2022.03.016 – ident: e_1_2_8_88_1 doi: 10.1093/cercor/bhab335 – ident: e_1_2_8_85_1 doi: 10.1016/j.pnpbp.2018.02.003 – ident: e_1_2_8_17_1 doi: 10.1016/j.immuni.2020.02.017 – ident: e_1_2_8_2_1 doi: 10.1002/wics.51 – ident: e_1_2_8_44_1 doi: 10.1146/annurev-psych-120709-145406 – ident: e_1_2_8_59_1 doi: 10.1177/1073858412440596 – ident: e_1_2_8_75_1 doi: 10.1038/sdata.2018.134 – ident: e_1_2_8_10_1 doi: 10.1196/annals.1440.011 – ident: e_1_2_8_46_1 doi: 10.1523/JNEUROSCI.5102-10.2011 – ident: e_1_2_8_48_1 doi: 10.1038/nrn2513 |
SSID | ssj0011501 |
Score | 2.4846115 |
Snippet | The angular gyrus (AG), given its rich connectivity and its location where multisensory information converges, is a functionally and anatomically heterogeneous... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2815 |
SubjectTerms | Adults angular gyrus Annotations Association analysis Brain Brain architecture Brain Mapping Cerebrum Cognition Consortia Contraindications Correlation analysis Datasets functional gradient Functional magnetic resonance imaging Functional morphology functional MRI Functionally gradient materials Gene expression Geometry Head injuries Heterogeneous structure hierarchical organization Humans Image processing Magnetic Resonance Imaging Medical imaging Neural networks Neuroimaging Parietal Lobe - anatomy & histology Pregnancy Scanners Sensorimotor system Subdivisions Visual perception |
Title | Functional hierarchy of the angular gyrus and its underlying genetic architecture |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.26247 https://www.ncbi.nlm.nih.gov/pubmed/36852603 https://www.proquest.com/docview/2799032769 https://www.proquest.com/docview/2780764855 https://pubmed.ncbi.nlm.nih.gov/PMC10089092 |
Volume | 44 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED-6DsZe9tHuw1sbtDHGXpw6sixZ7KktDWGQ0pUV8jAwki23Za0z8vGQ_fW7kz_atBuMvQQHXWLZvvP97nT3E8AH9KlKqagMCxXZUMSuDFOZ6FAqiw7Dci009Q6Pj-XoTHyZJJMN-Nz2wtT8EF3CjSzDv6_JwI2d792Qhl7Y6z6XXFAnOdVqESA67aijCOj4YAtdbKjxDdyyCkV8r_vlui-6BzDv10nexq_eAQ2fwvd26nXdyY_-cmH7-a87rI7_eW3P4EkDTNl-rUnPYcNVW7C9X2FQfr1iH5kvFfU5-C14NG5W5Lfh6xAdY51PZLStNtnNik1LhsCSUS4UI2d2vpot5_itYJeLOaO2tdkVtVcx1F5qomS3lzNewNnw6NvhKGy2aQhzIYQKtXY2NYkSZZ6WpZaGSzOI8lgVkTMDXQgjTVli2OR0USQmwRiqyCVxKilXcmvjl7BZTSv3GhiChYGzCkPMPBHKCoP_FVmTGO6KIh24AD61DyzLGw5z2krjKqvZl3mGdy7zdy6A953oz5q4409CO-1TzxrbnWdcoYeOuZI6gHfdMFodLaWYyk2XJJNGShKxTgCvaiXpzkKU_jjtOIB0TX06AWL0Xh-pLi88szcxLelIc7xOrx5_n3k2Ohj7gzf_LvoWHnOEaHW55g5sLmZLt4uQamF78ICLE_xUE9WDhwdHxyenPZ-e6Hmr-g1FPCI0 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwEB6VIgEvHC1HoIBBCPGSbdZx7FjipSBWC3QrgVqpLyiyY4dWtFm0x8Py65lxDroUJMRbokwSHzOewzOfAV6gTlVKJVXsVGJjkfoqzmWmY6ksKgzLtdBUOzw5kOMj8eE4O96A110tTIMP0QfcSDLCek0CTgHp3V-ooSf2fMAlF-oKXKUTvYND9bkHjyJTJ7hbqGRjjWtwhyuU8N3-1XVtdMnEvJwpedGCDSpodAu-dI1vMk--DZYLOyh__Ibr-L-9uw03W9uU7TXMdAc2fL0F23s1-uXnK_aShWzREIbfgmuTdlN-Gz6NUDc2IUVGJ2uT6KzYtGJoWzIKh6LzzL6uZss53jl2upgzqlybnVGFFUMGpjpKdnFH4y4cjd4dvh3H7UkNcSmEULHW3uYmU6Iq86rS0nBphkmZKpd4M9ROGGmqCj0nr53LTIZulCslwSopX3Fr03uwWU9r_wAY2gtDbxV6mWUmlBUGv5VYkxnuncuHPoJX3YwVZQtjTqdpnBUNADMvcOSKMHIRPO9JvzfYHX8i2ummvWjFd15whUo65UrqCJ71j1HwaDfF1H66JJo8UZKwdSK433BJ_xdC9cdmpxHka_zTExCo9_qT-vQkgHsT2JJONMd-Bv74e8uL8ZtJuHj476RP4fr4cLJf7L8_-PgIbnC02JrszR3YXMyW_jFaWAv7JAjST8NQIgI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIlVcCrRAAy0YhBCXbLOOY8fqqVBWy2MrQFTqASmyY7ut2marfRyWX8_YedClICFuiTJJ_JjxPDzzGeAl6lQhROJiIxIds9S6OOeZjLnQqDA0lUz62uHRIR8esQ_H2fEK7LW1MDU-RBdw85IR1msv4FfG7f4CDT3Vlz3KKRO34DbjSe5Z-uBrhx3lLZ3gbaGOjSUuwS2sUEJ3u1eXldENC_NmouR1AzZooMFd-N62vU48Oe_NZ7pX_vgN1vE_O3cP1hvLlOzXrHQfVmy1AZv7FXrllwvyioRc0RCE34C1UbMlvwlfBqgZ64Ai8edqe8FZkLEjaFkSHwxF15mcLCbzKd4ZcjabEl-3Nrnw9VUE2ddXUZLr-xkP4Gjw7tvbYdyc0xCXjDERS2l1rjLBXJk7J7miXPWTMhUmsaovDVNcOYd-k5XGZCpDJ8qU3IMqCeuo1ulDWK3Gld0CgtZC32qBPmaZMaGZwm8lWmWKWmPyvo3gdTthRdmAmPuzNC6KGn6ZFjhyRRi5CF50pFc1csefiLbbWS8a4Z0WVKCKTqngMoLn3WMUO7-Xoio7nnuaPBHcI-tE8Khmku4vHtMfm51GkC-xT0fgIb2Xn1RnpwHa20MtyURS7Gdgj7-3vBi-GYWLx_9O-gzWPh8Mik_vDz8-gTsUzbU6dXMbVmeTud1B82qmnwYx-glq0yC6 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Functional+hierarchy+of+the+angular+gyrus+and+its+underlying+genetic+architecture&rft.jtitle=Human+brain+mapping&rft.au=Song%2C+Yu&rft.au=Wang%2C+Chunli&rft.au=Cai%2C+Huanhuan&rft.au=Chen%2C+Jingyao&rft.date=2023-05-01&rft.issn=1065-9471&rft.eissn=1097-0193&rft.volume=44&rft.issue=7&rft.spage=2815&rft.epage=2828&rft_id=info:doi/10.1002%2Fhbm.26247&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_hbm_26247 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon |