A Unified View of Signal Extraction, Benchmarking, Interpolation and Extrapolation of Time Series

Time series data are often subject to statistical adjustments needed to increase accuracy, replace missing values and/or facilitate data analysis. The most common adjustments made to original observations are signal extraction (e.g. smoothing), benchmarking, interpolation and extrapolation. In this...

Full description

Saved in:
Bibliographic Details
Published inInternational statistical review Vol. 66; no. 3; pp. 245 - 269
Main Authors Dagum, Estela Bee, Cholette, Pierre A., Chen, Zhao-Guo
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 01.12.1998
International Statistical Institute and Instituto Nacional de Estadistica Geografia e Informatica
Blackwell
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Time series data are often subject to statistical adjustments needed to increase accuracy, replace missing values and/or facilitate data analysis. The most common adjustments made to original observations are signal extraction (e.g. smoothing), benchmarking, interpolation and extrapolation. In this article, we present a general dynamic stochastic regression model, from which most of these adjustments can be performed, and prove that the resulting generalized least square estimator is minimum variance linear unbiased. We extend current methods to include those cases where the signal follows a mixed model (deterministic and stochastic components) and the errors are autocorrelated and heteroscedastic. /// Les séries chronologiques sont souvent soumises à des ajustements de nature statistique, requis pour en augmenter la précision, remplacer des valeurs manquantes et faciliter l'interprétation. L'extraction de signal (e.g. lisssage), l'étalonnage, l'interpolation et l'extrapolation comptent parmis les ajustements les plus communs. Le présent article présente un modèle de régression dynamique et stochastique, à partir duquel la plupart de ces ajustements peuvent se faire; il prouve que l'estimateur par moindres carrés généralisés résultant est l'estimateur linéaire non-biaisé de variance mimimum. L'article généralise aussi certaines méthodes, afin de traiter les cas de signal "mixte" (avec composantes déterministe et stochastique) et d'erreurs autocorrélées et hétéroschédastiques.
Bibliography:istex:8E3FD33923D99B2A381205A9004EBA976837F270
ArticleID:INSR245
ark:/67375/WNG-FWD35QMK-1
ISSN:0306-7734
1751-5823
DOI:10.1111/j.1751-5823.1998.tb00372.x