A Trimer Consisting of the Tubulin-specific Chaperone D (TBCD), Regulatory GTPase ARL2, and β-Tubulin Is Required for Maintaining the Microtubule Network

Microtubule dynamics involves the polymerization and depolymerization of tubulin dimers and is an essential and highly regulated process required for cell viability, architecture, and division. The regulation of the microtubule network also depends on the maintenance of a pool of αβ-tubulin heterodi...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of biological chemistry Vol. 292; no. 10; pp. 4336 - 4349
Main Authors Francis, Joshua W., Newman, Laura E., Cunningham, Leslie A., Kahn, Richard A.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 10.03.2017
American Society for Biochemistry and Molecular Biology
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Microtubule dynamics involves the polymerization and depolymerization of tubulin dimers and is an essential and highly regulated process required for cell viability, architecture, and division. The regulation of the microtubule network also depends on the maintenance of a pool of αβ-tubulin heterodimers. These dimers are the end result of complex folding and assembly events, requiring the TCP1 Ring Complex (TriC or CCT) chaperonin and five tubulin-specific chaperones, tubulin binding cofactors A–E (TBCA–TBCE). However, models of the actions of these chaperones are incomplete or inconsistent. We previously purified TBCD from bovine tissues and showed that it tightly binds the small GTPase ARL2 but appears to be inactive. Here, in an effort to identify the functional form of TBCD and using non-denaturing gels and immunoblotting, we analyzed lysates from a number of mouse tissues and cell lines to identify the quaternary state(s) of TBCD and ARL2. We found that both proteins co-migrated in native gels in a complex of ∼200 kDa that also contained β-tubulin. Using human embryonic kidney cells enabled the purification of the TBCD·ARL2·β-tubulin trimer found in cell and tissue lysates as well as two other novel TBCD complexes. Characterization of ARL2 point mutants that disrupt binding to TBCD suggested that the ARL2-TBCD interaction is critical for proper maintenance of microtubule densities in cells. We conclude that the TBCD·ARL2·β-tubulin trimer represents a functional complex whose activity is fundamental to microtubule dynamics.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Edited by Velia M. Fowler
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M116.770909