On shape, orientation, and structure of atmospheric cells inside wind rolls in two SAR images

Synthetic aperture radar (SAR) images of the sea surface often show roll-vortex structures and other features which, in general, are spread out over several length scales and may present spatial periodicity as well as intermittence. Standard techniques, such as two-dimensional (2-D) Fourier analysis...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on geoscience and remote sensing Vol. 40; no. 10; pp. 2257 - 2262
Main Authors Zecchetto, S., De Biasio, F.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.10.2002
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Synthetic aperture radar (SAR) images of the sea surface often show roll-vortex structures and other features which, in general, are spread out over several length scales and may present spatial periodicity as well as intermittence. Standard techniques, such as two-dimensional (2-D) Fourier analysis, are unsuitable both when it is of interest to detect intermittent phenomena and to analyze the spatial disposition of the backscatter structures inside the SAR images. For the above reasons, the 2-D continuous wavelet transform analysis has been applied to two European Remote Sensing mission SAR images over the Mediterranean Sea, showing wind rolls and atmospheric gravity waves. Through the evaluation of the wavelet variance map, which ideally corresponds to the 2-D Fourier spectrum, it has been possible to assess the presence of two main energy areas at large (from 7-28 km) and small (from 0.5-2 km) spatial scales. While the large-scale fluctuations may be ascribed to atmospheric gravity waves and other features induced by the surroundings, the small-scale fluctuations reveal the inner structure of the atmospheric wind rolls. The SAR-like maps, obtained by adding the wavelet coefficient maps pertaining to the small scales, have permitted us to highlight the high- and low-intensity backscatter cells associated with the wind rolls. These cells have been statistically characterized by means of the frequency distributions of the size of the cells maximum and minimum axes, of the orientation of the maximum axis, and of their area. The results indicate that high- and low-intensity backscatter cells have similar characteristics in both cases studied: they appear of elliptic shape, with the major axis along the wind roll direction; the average axes ratio is 2.5:1. The frequency distributions of the cell area indicate a continuous distribution of sizes, without significant gaps.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0196-2892
1558-0644
DOI:10.1109/TGRS.2002.803624