NHE3 Regulatory Factor 1 (NHERF1) Modulates Intestinal Sodium-dependent Phosphate Transporter (NaPi-2b) Expression in Apical Microvilli

Pi uptake in the small intestine occurs predominantly through the NaPi-2b (SLC34a2) co-transporter. NaPi-2b is regulated by changes in dietary Pi but the mechanisms underlying this regulation are largely undetermined. Sequence analyses show NaPi-2b has a PDZ binding motif at its C terminus. Immunofl...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of biological chemistry Vol. 287; no. 42; pp. 35047 - 35056
Main Authors Giral, Hector, Cranston, DeeAnn, Lanzano, Luca, Caldas, Yupanqui, Sutherland, Eileen, Rachelson, Joanna, Dobrinskikh, Evgenia, Weinman, Edward J., Doctor, R.Brian, Gratton, Enrico, Levi, Moshe
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 12.10.2012
American Society for Biochemistry and Molecular Biology
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Pi uptake in the small intestine occurs predominantly through the NaPi-2b (SLC34a2) co-transporter. NaPi-2b is regulated by changes in dietary Pi but the mechanisms underlying this regulation are largely undetermined. Sequence analyses show NaPi-2b has a PDZ binding motif at its C terminus. Immunofluorescence imaging shows NaPi-2b and two PDZ domain containing proteins, NHERF1 and PDZK1, are expressed in the apical microvillar domain of rat small intestine enterocytes. Co-immunoprecipitation studies in rat enterocytes show that NHERF1 associates with NaPi-2b but not PDZK1. In HEK co-expression studies, GFP-NaPi-2b co-precipitates with FLAG-NHERF1. This interaction is markedly diminished when the C-terminal four amino acids are truncated from NaPi-2b. FLIM-FRET analyses using tagged proteins in CACO-2BBE cells show a distinct phasor shift between NaPi-2b and NHERF1 but not between NaPi-2b and the PDZK1 pair. This shift demonstrates that NaPi-2b and NHERF1 reside within 10 nm of each other. NHERF1−/− mice, but not PDZK1−/− mice, had a diminished adaptation of NaPi-2b expression in response to a low Pi diet. Together these studies demonstrate that NHERF1 associates with NaPi-2b in enterocytes and regulates NaPi-2b adaptation. Background: The type 2b sodium-dependent phosphate co-transporter (NaPi-2b) is the main mediator of intestinal active Pi absorption. Results: NaPi-2b interacts with the PDZ domain of NHE3 regulatory factor 1 (NHERF1). Conclusion: NHERF1 is an important regulator of NaPi-2b apical membrane targeting in response to a low Pi diet. Significance: Understanding of NaPi-2b adaptive mechanisms can help to design new therapies against hypo- and hyperphosphatemic disorders.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally to this work.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M112.392415