A highly oriented conductive MOF thin film-based Schottky diode for self-powered light and gas detection

The application of Schottky junction in self-powered devices is limited by low efficiency in both separation and transport of photogenerated electrons/holes. This issue may be overcome by introducing electronically conductive metal-organic framework (EC-MOF) materials into the junction and limited b...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials chemistry. A, Materials for energy and sustainability Vol. 8; no. 18; pp. 985 - 99
Main Authors Cao, Lin-An, Yao, Ming-Shui, Jiang, Hui-Jie, Kitagawa, Susumu, Ye, Xiao-Liang, Li, Wen-Hua, Xu, Gang
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 12.05.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The application of Schottky junction in self-powered devices is limited by low efficiency in both separation and transport of photogenerated electrons/holes. This issue may be overcome by introducing electronically conductive metal-organic framework (EC-MOF) materials into the junction and limited by preparing high-quality thin films of EC-MOFs. In this study, for the first time, high-quality EC-MOF thin films were demonstrated as effective interlayer materials to solve the above-mentioned issue by modulating the height of Schottky barrier ( Φ B ). The EC-MOF-based self-powered Schottky diode can act as a photodetector and demonstrate the highest external quantum efficiency (84%) for all reported self-powered photodetectors as well as the broadest detectable spectrum range (250 to 1500 nm), high on-off ratio (∼10 3 ) and short rise (0.007 s) and fall time (0.03 s). Furthermore, it can be used as a gas sensor for typical harmful gases and vapors. High-quality EC-MOF thin films are used to modulate the Schottky barrier height and detect light/gas by self-powered mode.
AbstractList The application of Schottky junction in self-powered devices is limited by low efficiency in both separation and transport of photogenerated electrons/holes. This issue may be overcome by introducing electronically conductive metal–organic framework (EC-MOF) materials into the junction and limited by preparing high-quality thin films of EC-MOFs. In this study, for the first time, high-quality EC-MOF thin films were demonstrated as effective interlayer materials to solve the above-mentioned issue by modulating the height of Schottky barrier (ΦB). The EC-MOF-based self-powered Schottky diode can act as a photodetector and demonstrate the highest external quantum efficiency (84%) for all reported self-powered photodetectors as well as the broadest detectable spectrum range (250 to 1500 nm), high on–off ratio (∼10³) and short rise (0.007 s) and fall time (0.03 s). Furthermore, it can be used as a gas sensor for typical harmful gases and vapors.
The application of Schottky junction in self-powered devices is limited by low efficiency in both separation and transport of photogenerated electrons/holes. This issue may be overcome by introducing electronically conductive metal–organic framework (EC-MOF) materials into the junction and limited by preparing high-quality thin films of EC-MOFs. In this study, for the first time, high-quality EC-MOF thin films were demonstrated as effective interlayer materials to solve the above-mentioned issue by modulating the height of Schottky barrier (ΦB). The EC-MOF-based self-powered Schottky diode can act as a photodetector and demonstrate the highest external quantum efficiency (84%) for all reported self-powered photodetectors as well as the broadest detectable spectrum range (250 to 1500 nm), high on–off ratio (∼103) and short rise (0.007 s) and fall time (0.03 s). Furthermore, it can be used as a gas sensor for typical harmful gases and vapors.
The application of Schottky junction in self-powered devices is limited by low efficiency in both separation and transport of photogenerated electrons/holes. This issue may be overcome by introducing electronically conductive metal–organic framework (EC-MOF) materials into the junction and limited by preparing high-quality thin films of EC-MOFs. In this study, for the first time, high-quality EC-MOF thin films were demonstrated as effective interlayer materials to solve the above-mentioned issue by modulating the height of Schottky barrier ( Φ B ). The EC-MOF-based self-powered Schottky diode can act as a photodetector and demonstrate the highest external quantum efficiency (84%) for all reported self-powered photodetectors as well as the broadest detectable spectrum range (250 to 1500 nm), high on–off ratio (∼10 3 ) and short rise (0.007 s) and fall time (0.03 s). Furthermore, it can be used as a gas sensor for typical harmful gases and vapors.
The application of Schottky junction in self-powered devices is limited by low efficiency in both separation and transport of photogenerated electrons/holes. This issue may be overcome by introducing electronically conductive metal-organic framework (EC-MOF) materials into the junction and limited by preparing high-quality thin films of EC-MOFs. In this study, for the first time, high-quality EC-MOF thin films were demonstrated as effective interlayer materials to solve the above-mentioned issue by modulating the height of Schottky barrier ( Φ B ). The EC-MOF-based self-powered Schottky diode can act as a photodetector and demonstrate the highest external quantum efficiency (84%) for all reported self-powered photodetectors as well as the broadest detectable spectrum range (250 to 1500 nm), high on-off ratio (∼10 3 ) and short rise (0.007 s) and fall time (0.03 s). Furthermore, it can be used as a gas sensor for typical harmful gases and vapors. High-quality EC-MOF thin films are used to modulate the Schottky barrier height and detect light/gas by self-powered mode.
Author Yao, Ming-Shui
Ye, Xiao-Liang
Kitagawa, Susumu
Cao, Lin-An
Jiang, Hui-Jie
Li, Wen-Hua
Xu, Gang
AuthorAffiliation State Key Laboratory of Structural Chemistry
Kyoto University
Chinese Academy of Sciences (CAS)
Institute for Integrated Cell-Material Sciences (WPI-iCeMS)
University of Chinese Academy of Sciences (UCAS)
Kyoto University Institute for Advanced Study
Fujian Institute of Research on the Structure of Matter
AuthorAffiliation_xml – name: Kyoto University
– name: Kyoto University Institute for Advanced Study
– name: State Key Laboratory of Structural Chemistry
– name: University of Chinese Academy of Sciences (UCAS)
– name: Chinese Academy of Sciences (CAS)
– name: Institute for Integrated Cell-Material Sciences (WPI-iCeMS)
– name: Fujian Institute of Research on the Structure of Matter
Author_xml – sequence: 1
  givenname: Lin-An
  surname: Cao
  fullname: Cao, Lin-An
– sequence: 2
  givenname: Ming-Shui
  surname: Yao
  fullname: Yao, Ming-Shui
– sequence: 3
  givenname: Hui-Jie
  surname: Jiang
  fullname: Jiang, Hui-Jie
– sequence: 4
  givenname: Susumu
  surname: Kitagawa
  fullname: Kitagawa, Susumu
– sequence: 5
  givenname: Xiao-Liang
  surname: Ye
  fullname: Ye, Xiao-Liang
– sequence: 6
  givenname: Wen-Hua
  surname: Li
  fullname: Li, Wen-Hua
– sequence: 7
  givenname: Gang
  surname: Xu
  fullname: Xu, Gang
BookMark eNp9kU1LAzEQhoMoWKsX70LEiwirySb7dSx-i-JBPS_ZZLabuk1qkir990YrFYqYy4S8z7wzmdlBm8YaQGifklNKWHWmSBCEsqKabKBBSjKSFLzKN1f3stxGe95PSDwlIXlVDVA3wp0ed_0CW6fBBFBYWqPmMuh3wA-PVzh02uBW99OkET7KT7KzIbwusNJWAW6twx76NpnZD3BR76NdwMIoPBYeKwgQvazZRVut6D3s_cQherm6fD6_Se4fr2_PR_eJ5JyFRBQNb0A1Gc-YyvMqLVKgMqVMZKAUZFLE5mVJgIqWQZEJoDQ-F7whgjVlxoboeOk7c_ZtDj7UU-0l9L0wYOe-TnlR5CmveBnRozV0YufOxO4iRUiVl2ksPERkSUlnvXfQ1lIH8fWl4ITua0rqr-nXF-R59D39u5hyspYyc3oq3OJv-GAJOy9X3O8qo374n17PVMs-AZh4nEA
CitedBy_id crossref_primary_10_1002_anie_202414526
crossref_primary_10_1039_D3CE00883E
crossref_primary_10_1088_1748_605X_ad82c7
crossref_primary_10_1038_s41570_022_00457_8
crossref_primary_10_1039_D4TA00333K
crossref_primary_10_1016_j_ccr_2021_213915
crossref_primary_10_1016_j_cej_2025_160543
crossref_primary_10_1021_acs_langmuir_1c00245
crossref_primary_10_1016_j_jhazmat_2022_128252
crossref_primary_10_1016_j_jallcom_2024_178086
crossref_primary_10_1109_JSEN_2024_3355399
crossref_primary_10_1002_adfm_202316511
crossref_primary_10_1016_j_mser_2024_100827
crossref_primary_10_1007_s12274_022_4459_3
crossref_primary_10_1007_s40820_024_01465_7
crossref_primary_10_1016_j_ccr_2024_215691
crossref_primary_10_1021_acsami_1c16332
crossref_primary_10_1002_admi_202100058
crossref_primary_10_1016_j_jmst_2024_01_052
crossref_primary_10_1007_s12274_024_6444_5
crossref_primary_10_1039_D0CS01160F
crossref_primary_10_1080_28361466_2024_2317385
crossref_primary_10_1002_admi_202101908
crossref_primary_10_1021_acsaelm_2c00965
crossref_primary_10_1039_C9CS00594C
crossref_primary_10_1021_acs_inorgchem_3c03086
crossref_primary_10_1039_D4CC02093F
crossref_primary_10_1002_adma_202105869
crossref_primary_10_1021_acs_jpcc_4c05548
crossref_primary_10_1002_ange_202414526
crossref_primary_10_1021_acsami_0c09689
crossref_primary_10_1007_s12274_022_4798_0
crossref_primary_10_1016_j_apmt_2024_102153
crossref_primary_10_1002_sstr_202100210
crossref_primary_10_1039_D3CE00593C
crossref_primary_10_1016_j_bios_2024_116256
crossref_primary_10_1039_D2NA00882C
crossref_primary_10_6023_A22010024
crossref_primary_10_1002_tcr_202300141
crossref_primary_10_1021_acsanm_3c03983
crossref_primary_10_1016_j_jcis_2022_04_095
crossref_primary_10_1016_j_xcrp_2023_101679
crossref_primary_10_1021_acs_nanolett_3c01717
crossref_primary_10_1016_j_trac_2024_117800
crossref_primary_10_1021_acsaelm_4c01897
crossref_primary_10_1002_adfm_202308847
crossref_primary_10_1002_advs_202100548
crossref_primary_10_1016_j_vacuum_2023_111937
crossref_primary_10_1016_j_ijbiomac_2023_126680
crossref_primary_10_1016_j_snb_2023_134941
crossref_primary_10_1021_acs_cgd_2c00701
Cites_doi 10.1002/adfm.201705833
10.1002/smll.201501298
10.1002/adma.201703663
10.1063/1.2410241
10.1039/C8SC02471E
10.1002/adfm.201702067
10.1002/adma.201304621
10.1039/b802426j
10.1002/anie.201411854
10.1016/j.physrep.2015.10.003
10.1002/smll.201804303
10.1016/j.snb.2015.12.005
10.1038/nmat4766
10.1039/C6TC03856E
10.1002/adma.201506457
10.1063/1.5001053
10.1002/adma.201905227
10.1038/nature06900
10.1039/C9TA02169H
10.1002/anie.201506219
10.1021/jacs.6b08511
10.1021/acs.chemrev.6b00361
10.1021/ja502765n
10.1002/adma.201003065
10.1038/s41557-019-0372-0
10.1039/C6TA07100G
10.1039/C7CS00122C
10.1002/adfm.201705237
10.1002/anie.201903980
10.1002/anie.201911543
10.1021/acs.chemmater.6b02528
10.1016/j.nanoen.2018.12.074
10.1016/j.jallcom.2010.01.098
10.1002/adma.201705112
10.1109/TED.2016.2565565
10.1021/cm301194a
10.1002/adom.201800561
10.1002/adma.201900820
10.1103/PhysRevLett.79.4834
10.1002/anie.201709558
10.1002/smll.201701687
10.1002/adfm.201101592
10.1002/smll.201604033
10.1039/c3ta11384a
10.1002/anie.201907772
10.1039/C8TC03780A
10.1002/adma.200904383
10.1002/anie.201911384
10.1021/jacs.5b09600
10.1021/acs.langmuir.6b00156
10.1021/ja312380b
10.1039/C9TA05226G
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2020
Copyright_xml – notice: Copyright Royal Society of Chemistry 2020
DBID AAYXX
CITATION
7SP
7SR
7ST
7U5
8BQ
8FD
C1K
JG9
L7M
SOI
7S9
L.6
DOI 10.1039/d0ta01379j
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Environment Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
Materials Research Database
Advanced Technologies Database with Aerospace
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Environment Abstracts
Advanced Technologies Database with Aerospace
METADEX
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
Materials Research Database
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2050-7496
EndPage 99
ExternalDocumentID 10_1039_D0TA01379J
d0ta01379j
GroupedDBID 0-7
0R
705
AAEMU
AAGNR
AAIWI
AANOJ
ABDVN
ABGFH
ABRYZ
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AENEX
AFRAH
AFVBQ
AGSTE
ALMA_UNASSIGNED_HOLDINGS
ASKNT
AUDPV
BLAPV
BSQNT
C6K
CKLOX
EBS
ECGLT
EE0
EF-
GNO
HZ
H~N
J3I
JG
O-G
O9-
R7C
RCNCU
RNS
RPMJG
RRC
RSCEA
SKA
SKF
SLH
UCJ
0R~
AAJAE
AAWGC
AAXHV
AAYXX
ABASK
ABEMK
ABJNI
ABPDG
ABXOH
AEFDR
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFRZK
AGEGJ
AGRSR
AHGCF
AKMSF
ALUYA
ANUXI
APEMP
CITATION
GGIMP
H13
HZ~
RAOCF
7SP
7SR
7ST
7U5
8BQ
8FD
C1K
JG9
L7M
SOI
7S9
L.6
ID FETCH-LOGICAL-c443t-a7b4bedb5453d669272e1c213a5edde5ca000c80e1af3e75ae11de574b0a3b853
ISSN 2050-7488
2050-7496
IngestDate Thu Jul 10 17:20:23 EDT 2025
Mon Jun 30 12:03:01 EDT 2025
Thu Apr 24 23:09:50 EDT 2025
Tue Jul 01 01:12:52 EDT 2025
Sat Jan 08 03:56:27 EST 2022
Wed Nov 11 00:26:55 EST 2020
IsPeerReviewed true
IsScholarly true
Issue 18
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c443t-a7b4bedb5453d669272e1c213a5edde5ca000c80e1af3e75ae11de574b0a3b853
Notes 10.1039/d0ta01379j
Electronic supplementary information (ESI) available. See DOI
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8562-0724
0000-0002-7904-5003
PQID 2400968221
PQPubID 2047523
PageCount 6
ParticipantIDs crossref_citationtrail_10_1039_D0TA01379J
proquest_journals_2400968221
crossref_primary_10_1039_D0TA01379J
proquest_miscellaneous_2477624948
rsc_primary_d0ta01379j
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200512
PublicationDateYYYYMMDD 2020-05-12
PublicationDate_xml – month: 5
  year: 2020
  text: 20200512
  day: 12
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Journal of materials chemistry. A, Materials for energy and sustainability
PublicationYear 2020
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Wu (D0TA01379J-(cit23)/*[position()=1]) 2017; 139
Yang (D0TA01379J-(cit46)/*[position()=1]) 2016; 226
Yu (D0TA01379J-(cit39)/*[position()=1]) 2016; 63
Li (D0TA01379J-(cit5)/*[position()=1]) 2009; 38
Xie (D0TA01379J-(cit48)/*[position()=1]) 2018; 28
Nusir (D0TA01379J-(cit50)/*[position()=1]) 2017; 111
Yao (D0TA01379J-(cit52)/*[position()=1]) 2016; 28
Deng (D0TA01379J-(cit49)/*[position()=1]) 2014; 26
Sun (D0TA01379J-(cit10)/*[position()=1]) 2016; 55
Yoshida (D0TA01379J-(cit13)/*[position()=1]) 2019; 58
Li (D0TA01379J-(cit20)/*[position()=1]) 2019; 7
Schneider (D0TA01379J-(cit12)/*[position()=1]) 2018; 9
Fang (D0TA01379J-(cit7)/*[position()=1]) 2018; 30
Jiang (D0TA01379J-(cit14)/*[position()=1]) 2018; 6
Horike (D0TA01379J-(cit1)/*[position()=1]) 2020; 59
Arslan (D0TA01379J-(cit44)/*[position()=1]) 2011; 21
Paolesse (D0TA01379J-(cit31)/*[position()=1]) 2016; 117
Sheberla (D0TA01379J-(cit17)/*[position()=1]) 2014; 136
Wang (D0TA01379J-(cit2)/*[position()=1]) 2008; 453
Jayaramulu (D0TA01379J-(cit4)/*[position()=1]) 2019; 31
Sun (D0TA01379J-(cit15)/*[position()=1]) 2019; 7
Lee (D0TA01379J-(cit33)/*[position()=1]) 2019; 15
Haldar (D0TA01379J-(cit3)/*[position()=1]) 2019
Chen (D0TA01379J-(cit51)/*[position()=1]) 2017; 13
Han (D0TA01379J-(cit34)/*[position()=1]) 2019; 57
Yao (D0TA01379J-(cit53)/*[position()=1]) 2019; 7
Smith (D0TA01379J-(cit9)/*[position()=1]) 2016; 28
Sheberla (D0TA01379J-(cit21)/*[position()=1]) 2017; 16
Jiao (D0TA01379J-(cit8)/*[position()=1]) 2018; 30
Li (D0TA01379J-(cit28)/*[position()=1]) 2010; 22
Kambe (D0TA01379J-(cit27)/*[position()=1]) 2013; 135
Dimoulas (D0TA01379J-(cit38)/*[position()=1]) 2006; 89
Campbell (D0TA01379J-(cit22)/*[position()=1]) 2015; 54
Di Bartolomeo (D0TA01379J-(cit29)/*[position()=1]) 2016; 606
Hmadeh (D0TA01379J-(cit43)/*[position()=1]) 2012; 24
Skorupskii (D0TA01379J-(cit11)/*[position()=1]) 2020; 12
Li (D0TA01379J-(cit47)/*[position()=1]) 2018; 28
Li (D0TA01379J-(cit18)/*[position()=1]) 2017; 27
Wu (D0TA01379J-(cit32)/*[position()=1]) 2016; 4
Stassen (D0TA01379J-(cit6)/*[position()=1]) 2017; 46
Yao (D0TA01379J-(cit24)/*[position()=1]) 2019; 58
Zhao (D0TA01379J-(cit30)/*[position()=1]) 2015; 2015
Su (D0TA01379J-(cit36)/*[position()=1]) 2017; 13
Campbell (D0TA01379J-(cit19)/*[position()=1]) 2015; 137
Xiang (D0TA01379J-(cit40)/*[position()=1]) 2015; 11
Meyer (D0TA01379J-(cit45)/*[position()=1]) 2011; 23
Ding (D0TA01379J-(cit42)/*[position()=1]) 2017; 5
Yao (D0TA01379J-(cit25)/*[position()=1]) 2017; 56
Xie (D0TA01379J-(cit41)/*[position()=1]) 2013; 1
Song (D0TA01379J-(cit16)/*[position()=1]) 2020; 59
Chadi (D0TA01379J-(cit37)/*[position()=1]) 1997; 79
Maeda (D0TA01379J-(cit26)/*[position()=1]) 2016; 32
Farag (D0TA01379J-(cit35)/*[position()=1]) 2010; 495
References_xml – volume: 28
  start-page: 1705833
  year: 2018
  ident: D0TA01379J-(cit48)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201705833
– volume: 11
  start-page: 4829
  year: 2015
  ident: D0TA01379J-(cit40)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.201501298
– volume: 30
  start-page: e1703663
  year: 2018
  ident: D0TA01379J-(cit8)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201703663
– volume: 89
  start-page: 252110
  year: 2006
  ident: D0TA01379J-(cit38)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2410241
– volume: 9
  start-page: 7405
  year: 2018
  ident: D0TA01379J-(cit12)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/C8SC02471E
– volume: 27
  start-page: 1702067
  year: 2017
  ident: D0TA01379J-(cit18)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201702067
– volume: 26
  start-page: 2619
  year: 2014
  ident: D0TA01379J-(cit49)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201304621
– volume: 38
  start-page: 1477
  year: 2009
  ident: D0TA01379J-(cit5)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b802426j
– volume: 54
  start-page: 4349
  year: 2015
  ident: D0TA01379J-(cit22)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201411854
– volume: 606
  start-page: 1
  year: 2016
  ident: D0TA01379J-(cit29)/*[position()=1]
  publication-title: Phys. Rep.
  doi: 10.1016/j.physrep.2015.10.003
– volume: 15
  start-page: e1804303
  year: 2019
  ident: D0TA01379J-(cit33)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.201804303
– volume: 226
  start-page: 478
  year: 2016
  ident: D0TA01379J-(cit46)/*[position()=1]
  publication-title: Sens. Actuators, B
  doi: 10.1016/j.snb.2015.12.005
– volume: 16
  start-page: 220
  year: 2017
  ident: D0TA01379J-(cit21)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4766
– volume: 4
  start-page: 10804
  year: 2016
  ident: D0TA01379J-(cit32)/*[position()=1]
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C6TC03856E
– volume: 28
  start-page: 5229
  year: 2016
  ident: D0TA01379J-(cit52)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201506457
– volume: 111
  start-page: 171103
  year: 2017
  ident: D0TA01379J-(cit50)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5001053
– start-page: 1905227
  year: 2019
  ident: D0TA01379J-(cit3)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201905227
– volume: 453
  start-page: 207
  year: 2008
  ident: D0TA01379J-(cit2)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature06900
– volume: 7
  start-page: 10431
  year: 2019
  ident: D0TA01379J-(cit20)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA02169H
– volume: 55
  start-page: 3566
  year: 2016
  ident: D0TA01379J-(cit10)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201506219
– volume: 139
  start-page: 1360
  year: 2017
  ident: D0TA01379J-(cit23)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b08511
– volume: 117
  start-page: 2517
  year: 2016
  ident: D0TA01379J-(cit31)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.6b00361
– volume: 136
  start-page: 8859
  year: 2014
  ident: D0TA01379J-(cit17)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja502765n
– volume: 23
  start-page: 70
  year: 2011
  ident: D0TA01379J-(cit45)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201003065
– volume: 12
  start-page: 131
  year: 2020
  ident: D0TA01379J-(cit11)/*[position()=1]
  publication-title: Nat. Chem.
  doi: 10.1038/s41557-019-0372-0
– volume: 5
  start-page: 285
  year: 2017
  ident: D0TA01379J-(cit42)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA07100G
– volume: 46
  start-page: 3185
  year: 2017
  ident: D0TA01379J-(cit6)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00122C
– volume: 28
  start-page: 1705237
  year: 2018
  ident: D0TA01379J-(cit47)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201705237
– volume: 58
  start-page: 10909
  year: 2019
  ident: D0TA01379J-(cit13)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201903980
– volume: 59
  start-page: 1118
  year: 2020
  ident: D0TA01379J-(cit16)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201911543
– volume: 28
  start-page: 5264
  year: 2016
  ident: D0TA01379J-(cit9)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.6b02528
– volume: 57
  start-page: 528
  year: 2019
  ident: D0TA01379J-(cit34)/*[position()=1]
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.12.074
– volume: 495
  start-page: 116
  year: 2010
  ident: D0TA01379J-(cit35)/*[position()=1]
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2010.01.098
– volume: 30
  start-page: 1705112
  year: 2018
  ident: D0TA01379J-(cit7)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201705112
– volume: 63
  start-page: 2671
  year: 2016
  ident: D0TA01379J-(cit39)/*[position()=1]
  publication-title: IEEE Trans. Electron. Devices
  doi: 10.1109/TED.2016.2565565
– volume: 24
  start-page: 3511
  year: 2012
  ident: D0TA01379J-(cit43)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/cm301194a
– volume: 6
  start-page: 1800561
  year: 2018
  ident: D0TA01379J-(cit14)/*[position()=1]
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.201800561
– volume: 31
  start-page: e1900820
  year: 2019
  ident: D0TA01379J-(cit4)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201900820
– volume: 79
  start-page: 4834
  year: 1997
  ident: D0TA01379J-(cit37)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.79.4834
– volume: 56
  start-page: 16510
  year: 2017
  ident: D0TA01379J-(cit25)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201709558
– volume: 13
  start-page: 1701687
  year: 2017
  ident: D0TA01379J-(cit36)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.201701687
– volume: 21
  start-page: 4228
  year: 2011
  ident: D0TA01379J-(cit44)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201101592
– volume: 13
  start-page: 1604033
  year: 2017
  ident: D0TA01379J-(cit51)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.201604033
– volume: 1
  start-page: 8567
  year: 2013
  ident: D0TA01379J-(cit41)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c3ta11384a
– volume: 58
  start-page: 14915
  year: 2019
  ident: D0TA01379J-(cit24)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201907772
– volume: 7
  start-page: 4662
  year: 2019
  ident: D0TA01379J-(cit15)/*[position()=1]
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C8TC03780A
– volume: 2015
  start-page: 1
  year: 2015
  ident: D0TA01379J-(cit30)/*[position()=1]
  publication-title: J. Nanomater.
– volume: 22
  start-page: 2743
  year: 2010
  ident: D0TA01379J-(cit28)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200904383
– volume: 59
  start-page: 6652
  year: 2020
  ident: D0TA01379J-(cit1)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201911384
– volume: 137
  start-page: 13780
  year: 2015
  ident: D0TA01379J-(cit19)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b09600
– volume: 32
  start-page: 2527
  year: 2016
  ident: D0TA01379J-(cit26)/*[position()=1]
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.6b00156
– volume: 135
  start-page: 2462
  year: 2013
  ident: D0TA01379J-(cit27)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja312380b
– volume: 7
  start-page: 18397
  year: 2019
  ident: D0TA01379J-(cit53)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA05226G
SSID ssj0000800699
Score 2.5173514
Snippet The application of Schottky junction in self-powered devices is limited by low efficiency in both separation and transport of photogenerated electrons/holes....
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 985
SubjectTerms coordination polymers
diodes
electrons
films (materials)
Gas sensors
Gases
Interlayers
Metal-organic frameworks
Photometers
Quantum efficiency
Schottky diodes
Thin films
Vapors
Title A highly oriented conductive MOF thin film-based Schottky diode for self-powered light and gas detection
URI https://www.proquest.com/docview/2400968221
https://www.proquest.com/docview/2477624948
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELe67gUeEF8THQMZwQuKMpzv5DEam0ph8EAnjafKiZ0t0KXVmgiNP4-_jDs7cQIb0uAlqmw3bXI_353P598R8irhcc7zwrFd6cQ2aEmYcyFLbAlTSaB99HOV5fsxnJ74s9PgdDT6OchaaupsP_9x47mS_5EqtIFc8ZTsP0jW3BQa4DPIF64gYbjeSsaphWzDyytrhWzF6DvC6hYJXDEd6PjTEXiVZYXUSxc2WiuhODfr-tuVJcqV0HTfG7ks7DXWSoP-JS7V1X7CGd9YQtYqUav6iwcLzq5-SivvysbtW6k-AdT1KEZxfb5Qhei781qYkmui-Qd81cYH7NSA9YtuPAbban8-b0qT61O2Ie5pU9qz0gDzfVnzM_6dt7lGzUUzjGi4ajPeGQQ5XRYw5DjVelkO23T1205zx0OAxgM1nDBdB6g16QnTJUmvmQvmIdvqWzZPkXkxmfVGsUsE-MNWmgxGtXfvJYv-u1tk24Wlijsm2-nh_N0HE-lDnzxUhUzNg3U8uV7ypr_B755Rv9zZuuxq0SifZ36f3GtFTVONvAdkJKuH5O6AwvIROU-pxiDtMEh7DFLAIEUM0h6DtMMgVRikABA6xCBVGKQAFgoYpAaDj8nJ0eH8YGq31Tvs3Pe92uZR5mdSZOCieyIMEzcCdZC7jscDVARBzuHV5DGTDi88GQVcOg40R37GuJeBF7lDxtWqkk8ITUIOPbBYEHHsZy6Pk9zJCsGKiDkiCL0Jed29uUXeUttjhZXl4rqYJuSlGbvWhC43jtrrBLBoJ_xmgenWSQgetTMhL0w3TC_cY-OVXDU4JgL3AjmXJmQHBGd-Q7Caq3t_nZDdmzsWa1Hs3urvPSV3-omzR8b1ZSOfgXNcZ89b9P0CGxa7cA
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+highly+oriented+conductive+MOF+thin+film-based+Schottky+diode+for+self-powered+light+and+gas+detection&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Cao%2C+Lin-An&rft.au=Yao%2C+Ming-Shui&rft.au=Jiang%2C+Hui-Jie&rft.au=Kitagawa%2C+Susumu&rft.date=2020-05-12&rft.issn=2050-7488&rft.eissn=2050-7496&rft.volume=8&rft.issue=18&rft.spage=9085&rft.epage=9090&rft_id=info:doi/10.1039%2FD0TA01379J&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D0TA01379J
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon