A highly oriented conductive MOF thin film-based Schottky diode for self-powered light and gas detection
The application of Schottky junction in self-powered devices is limited by low efficiency in both separation and transport of photogenerated electrons/holes. This issue may be overcome by introducing electronically conductive metal-organic framework (EC-MOF) materials into the junction and limited b...
Saved in:
Published in | Journal of materials chemistry. A, Materials for energy and sustainability Vol. 8; no. 18; pp. 985 - 99 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
12.05.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The application of Schottky junction in self-powered devices is limited by low efficiency in both separation and transport of photogenerated electrons/holes. This issue may be overcome by introducing electronically conductive metal-organic framework (EC-MOF) materials into the junction and limited by preparing high-quality thin films of EC-MOFs. In this study, for the first time, high-quality EC-MOF thin films were demonstrated as effective interlayer materials to solve the above-mentioned issue by modulating the height of Schottky barrier (
Φ
B
). The EC-MOF-based self-powered Schottky diode can act as a photodetector and demonstrate the highest external quantum efficiency (84%) for all reported self-powered photodetectors as well as the broadest detectable spectrum range (250 to 1500 nm), high on-off ratio (∼10
3
) and short rise (0.007 s) and fall time (0.03 s). Furthermore, it can be used as a gas sensor for typical harmful gases and vapors.
High-quality EC-MOF thin films are used to modulate the Schottky barrier height and detect light/gas by self-powered mode. |
---|---|
AbstractList | The application of Schottky junction in self-powered devices is limited by low efficiency in both separation and transport of photogenerated electrons/holes. This issue may be overcome by introducing electronically conductive metal–organic framework (EC-MOF) materials into the junction and limited by preparing high-quality thin films of EC-MOFs. In this study, for the first time, high-quality EC-MOF thin films were demonstrated as effective interlayer materials to solve the above-mentioned issue by modulating the height of Schottky barrier (ΦB). The EC-MOF-based self-powered Schottky diode can act as a photodetector and demonstrate the highest external quantum efficiency (84%) for all reported self-powered photodetectors as well as the broadest detectable spectrum range (250 to 1500 nm), high on–off ratio (∼10³) and short rise (0.007 s) and fall time (0.03 s). Furthermore, it can be used as a gas sensor for typical harmful gases and vapors. The application of Schottky junction in self-powered devices is limited by low efficiency in both separation and transport of photogenerated electrons/holes. This issue may be overcome by introducing electronically conductive metal–organic framework (EC-MOF) materials into the junction and limited by preparing high-quality thin films of EC-MOFs. In this study, for the first time, high-quality EC-MOF thin films were demonstrated as effective interlayer materials to solve the above-mentioned issue by modulating the height of Schottky barrier (ΦB). The EC-MOF-based self-powered Schottky diode can act as a photodetector and demonstrate the highest external quantum efficiency (84%) for all reported self-powered photodetectors as well as the broadest detectable spectrum range (250 to 1500 nm), high on–off ratio (∼103) and short rise (0.007 s) and fall time (0.03 s). Furthermore, it can be used as a gas sensor for typical harmful gases and vapors. The application of Schottky junction in self-powered devices is limited by low efficiency in both separation and transport of photogenerated electrons/holes. This issue may be overcome by introducing electronically conductive metal–organic framework (EC-MOF) materials into the junction and limited by preparing high-quality thin films of EC-MOFs. In this study, for the first time, high-quality EC-MOF thin films were demonstrated as effective interlayer materials to solve the above-mentioned issue by modulating the height of Schottky barrier ( Φ B ). The EC-MOF-based self-powered Schottky diode can act as a photodetector and demonstrate the highest external quantum efficiency (84%) for all reported self-powered photodetectors as well as the broadest detectable spectrum range (250 to 1500 nm), high on–off ratio (∼10 3 ) and short rise (0.007 s) and fall time (0.03 s). Furthermore, it can be used as a gas sensor for typical harmful gases and vapors. The application of Schottky junction in self-powered devices is limited by low efficiency in both separation and transport of photogenerated electrons/holes. This issue may be overcome by introducing electronically conductive metal-organic framework (EC-MOF) materials into the junction and limited by preparing high-quality thin films of EC-MOFs. In this study, for the first time, high-quality EC-MOF thin films were demonstrated as effective interlayer materials to solve the above-mentioned issue by modulating the height of Schottky barrier ( Φ B ). The EC-MOF-based self-powered Schottky diode can act as a photodetector and demonstrate the highest external quantum efficiency (84%) for all reported self-powered photodetectors as well as the broadest detectable spectrum range (250 to 1500 nm), high on-off ratio (∼10 3 ) and short rise (0.007 s) and fall time (0.03 s). Furthermore, it can be used as a gas sensor for typical harmful gases and vapors. High-quality EC-MOF thin films are used to modulate the Schottky barrier height and detect light/gas by self-powered mode. |
Author | Yao, Ming-Shui Ye, Xiao-Liang Kitagawa, Susumu Cao, Lin-An Jiang, Hui-Jie Li, Wen-Hua Xu, Gang |
AuthorAffiliation | State Key Laboratory of Structural Chemistry Kyoto University Chinese Academy of Sciences (CAS) Institute for Integrated Cell-Material Sciences (WPI-iCeMS) University of Chinese Academy of Sciences (UCAS) Kyoto University Institute for Advanced Study Fujian Institute of Research on the Structure of Matter |
AuthorAffiliation_xml | – name: Kyoto University – name: Kyoto University Institute for Advanced Study – name: State Key Laboratory of Structural Chemistry – name: University of Chinese Academy of Sciences (UCAS) – name: Chinese Academy of Sciences (CAS) – name: Institute for Integrated Cell-Material Sciences (WPI-iCeMS) – name: Fujian Institute of Research on the Structure of Matter |
Author_xml | – sequence: 1 givenname: Lin-An surname: Cao fullname: Cao, Lin-An – sequence: 2 givenname: Ming-Shui surname: Yao fullname: Yao, Ming-Shui – sequence: 3 givenname: Hui-Jie surname: Jiang fullname: Jiang, Hui-Jie – sequence: 4 givenname: Susumu surname: Kitagawa fullname: Kitagawa, Susumu – sequence: 5 givenname: Xiao-Liang surname: Ye fullname: Ye, Xiao-Liang – sequence: 6 givenname: Wen-Hua surname: Li fullname: Li, Wen-Hua – sequence: 7 givenname: Gang surname: Xu fullname: Xu, Gang |
BookMark | eNp9kU1LAzEQhoMoWKsX70LEiwirySb7dSx-i-JBPS_ZZLabuk1qkir990YrFYqYy4S8z7wzmdlBm8YaQGifklNKWHWmSBCEsqKabKBBSjKSFLzKN1f3stxGe95PSDwlIXlVDVA3wp0ed_0CW6fBBFBYWqPmMuh3wA-PVzh02uBW99OkET7KT7KzIbwusNJWAW6twx76NpnZD3BR76NdwMIoPBYeKwgQvazZRVut6D3s_cQherm6fD6_Se4fr2_PR_eJ5JyFRBQNb0A1Gc-YyvMqLVKgMqVMZKAUZFLE5mVJgIqWQZEJoDQ-F7whgjVlxoboeOk7c_ZtDj7UU-0l9L0wYOe-TnlR5CmveBnRozV0YufOxO4iRUiVl2ksPERkSUlnvXfQ1lIH8fWl4ITua0rqr-nXF-R59D39u5hyspYyc3oq3OJv-GAJOy9X3O8qo374n17PVMs-AZh4nEA |
CitedBy_id | crossref_primary_10_1002_anie_202414526 crossref_primary_10_1039_D3CE00883E crossref_primary_10_1088_1748_605X_ad82c7 crossref_primary_10_1038_s41570_022_00457_8 crossref_primary_10_1039_D4TA00333K crossref_primary_10_1016_j_ccr_2021_213915 crossref_primary_10_1016_j_cej_2025_160543 crossref_primary_10_1021_acs_langmuir_1c00245 crossref_primary_10_1016_j_jhazmat_2022_128252 crossref_primary_10_1016_j_jallcom_2024_178086 crossref_primary_10_1109_JSEN_2024_3355399 crossref_primary_10_1002_adfm_202316511 crossref_primary_10_1016_j_mser_2024_100827 crossref_primary_10_1007_s12274_022_4459_3 crossref_primary_10_1007_s40820_024_01465_7 crossref_primary_10_1016_j_ccr_2024_215691 crossref_primary_10_1021_acsami_1c16332 crossref_primary_10_1002_admi_202100058 crossref_primary_10_1016_j_jmst_2024_01_052 crossref_primary_10_1007_s12274_024_6444_5 crossref_primary_10_1039_D0CS01160F crossref_primary_10_1080_28361466_2024_2317385 crossref_primary_10_1002_admi_202101908 crossref_primary_10_1021_acsaelm_2c00965 crossref_primary_10_1039_C9CS00594C crossref_primary_10_1021_acs_inorgchem_3c03086 crossref_primary_10_1039_D4CC02093F crossref_primary_10_1002_adma_202105869 crossref_primary_10_1021_acs_jpcc_4c05548 crossref_primary_10_1002_ange_202414526 crossref_primary_10_1021_acsami_0c09689 crossref_primary_10_1007_s12274_022_4798_0 crossref_primary_10_1016_j_apmt_2024_102153 crossref_primary_10_1002_sstr_202100210 crossref_primary_10_1039_D3CE00593C crossref_primary_10_1016_j_bios_2024_116256 crossref_primary_10_1039_D2NA00882C crossref_primary_10_6023_A22010024 crossref_primary_10_1002_tcr_202300141 crossref_primary_10_1021_acsanm_3c03983 crossref_primary_10_1016_j_jcis_2022_04_095 crossref_primary_10_1016_j_xcrp_2023_101679 crossref_primary_10_1021_acs_nanolett_3c01717 crossref_primary_10_1016_j_trac_2024_117800 crossref_primary_10_1021_acsaelm_4c01897 crossref_primary_10_1002_adfm_202308847 crossref_primary_10_1002_advs_202100548 crossref_primary_10_1016_j_vacuum_2023_111937 crossref_primary_10_1016_j_ijbiomac_2023_126680 crossref_primary_10_1016_j_snb_2023_134941 crossref_primary_10_1021_acs_cgd_2c00701 |
Cites_doi | 10.1002/adfm.201705833 10.1002/smll.201501298 10.1002/adma.201703663 10.1063/1.2410241 10.1039/C8SC02471E 10.1002/adfm.201702067 10.1002/adma.201304621 10.1039/b802426j 10.1002/anie.201411854 10.1016/j.physrep.2015.10.003 10.1002/smll.201804303 10.1016/j.snb.2015.12.005 10.1038/nmat4766 10.1039/C6TC03856E 10.1002/adma.201506457 10.1063/1.5001053 10.1002/adma.201905227 10.1038/nature06900 10.1039/C9TA02169H 10.1002/anie.201506219 10.1021/jacs.6b08511 10.1021/acs.chemrev.6b00361 10.1021/ja502765n 10.1002/adma.201003065 10.1038/s41557-019-0372-0 10.1039/C6TA07100G 10.1039/C7CS00122C 10.1002/adfm.201705237 10.1002/anie.201903980 10.1002/anie.201911543 10.1021/acs.chemmater.6b02528 10.1016/j.nanoen.2018.12.074 10.1016/j.jallcom.2010.01.098 10.1002/adma.201705112 10.1109/TED.2016.2565565 10.1021/cm301194a 10.1002/adom.201800561 10.1002/adma.201900820 10.1103/PhysRevLett.79.4834 10.1002/anie.201709558 10.1002/smll.201701687 10.1002/adfm.201101592 10.1002/smll.201604033 10.1039/c3ta11384a 10.1002/anie.201907772 10.1039/C8TC03780A 10.1002/adma.200904383 10.1002/anie.201911384 10.1021/jacs.5b09600 10.1021/acs.langmuir.6b00156 10.1021/ja312380b 10.1039/C9TA05226G |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2020 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2020 |
DBID | AAYXX CITATION 7SP 7SR 7ST 7U5 8BQ 8FD C1K JG9 L7M SOI 7S9 L.6 |
DOI | 10.1039/d0ta01379j |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Environment Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management Materials Research Database Advanced Technologies Database with Aerospace Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Environment Abstracts Advanced Technologies Database with Aerospace METADEX Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2050-7496 |
EndPage | 99 |
ExternalDocumentID | 10_1039_D0TA01379J d0ta01379j |
GroupedDBID | 0-7 0R 705 AAEMU AAGNR AAIWI AANOJ ABDVN ABGFH ABRYZ ACGFS ACIWK ACLDK ADMRA ADSRN AENEX AFRAH AFVBQ AGSTE ALMA_UNASSIGNED_HOLDINGS ASKNT AUDPV BLAPV BSQNT C6K CKLOX EBS ECGLT EE0 EF- GNO HZ H~N J3I JG O-G O9- R7C RCNCU RNS RPMJG RRC RSCEA SKA SKF SLH UCJ 0R~ AAJAE AAWGC AAXHV AAYXX ABASK ABEMK ABJNI ABPDG ABXOH AEFDR AENGV AESAV AETIL AFLYV AFOGI AFRDS AFRZK AGEGJ AGRSR AHGCF AKMSF ALUYA ANUXI APEMP CITATION GGIMP H13 HZ~ RAOCF 7SP 7SR 7ST 7U5 8BQ 8FD C1K JG9 L7M SOI 7S9 L.6 |
ID | FETCH-LOGICAL-c443t-a7b4bedb5453d669272e1c213a5edde5ca000c80e1af3e75ae11de574b0a3b853 |
ISSN | 2050-7488 2050-7496 |
IngestDate | Thu Jul 10 17:20:23 EDT 2025 Mon Jun 30 12:03:01 EDT 2025 Thu Apr 24 23:09:50 EDT 2025 Tue Jul 01 01:12:52 EDT 2025 Sat Jan 08 03:56:27 EST 2022 Wed Nov 11 00:26:55 EST 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c443t-a7b4bedb5453d669272e1c213a5edde5ca000c80e1af3e75ae11de574b0a3b853 |
Notes | 10.1039/d0ta01379j Electronic supplementary information (ESI) available. See DOI ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-8562-0724 0000-0002-7904-5003 |
PQID | 2400968221 |
PQPubID | 2047523 |
PageCount | 6 |
ParticipantIDs | crossref_citationtrail_10_1039_D0TA01379J proquest_journals_2400968221 crossref_primary_10_1039_D0TA01379J proquest_miscellaneous_2477624948 rsc_primary_d0ta01379j |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200512 |
PublicationDateYYYYMMDD | 2020-05-12 |
PublicationDate_xml | – month: 5 year: 2020 text: 20200512 day: 12 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Journal of materials chemistry. A, Materials for energy and sustainability |
PublicationYear | 2020 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Wu (D0TA01379J-(cit23)/*[position()=1]) 2017; 139 Yang (D0TA01379J-(cit46)/*[position()=1]) 2016; 226 Yu (D0TA01379J-(cit39)/*[position()=1]) 2016; 63 Li (D0TA01379J-(cit5)/*[position()=1]) 2009; 38 Xie (D0TA01379J-(cit48)/*[position()=1]) 2018; 28 Nusir (D0TA01379J-(cit50)/*[position()=1]) 2017; 111 Yao (D0TA01379J-(cit52)/*[position()=1]) 2016; 28 Deng (D0TA01379J-(cit49)/*[position()=1]) 2014; 26 Sun (D0TA01379J-(cit10)/*[position()=1]) 2016; 55 Yoshida (D0TA01379J-(cit13)/*[position()=1]) 2019; 58 Li (D0TA01379J-(cit20)/*[position()=1]) 2019; 7 Schneider (D0TA01379J-(cit12)/*[position()=1]) 2018; 9 Fang (D0TA01379J-(cit7)/*[position()=1]) 2018; 30 Jiang (D0TA01379J-(cit14)/*[position()=1]) 2018; 6 Horike (D0TA01379J-(cit1)/*[position()=1]) 2020; 59 Arslan (D0TA01379J-(cit44)/*[position()=1]) 2011; 21 Paolesse (D0TA01379J-(cit31)/*[position()=1]) 2016; 117 Sheberla (D0TA01379J-(cit17)/*[position()=1]) 2014; 136 Wang (D0TA01379J-(cit2)/*[position()=1]) 2008; 453 Jayaramulu (D0TA01379J-(cit4)/*[position()=1]) 2019; 31 Sun (D0TA01379J-(cit15)/*[position()=1]) 2019; 7 Lee (D0TA01379J-(cit33)/*[position()=1]) 2019; 15 Haldar (D0TA01379J-(cit3)/*[position()=1]) 2019 Chen (D0TA01379J-(cit51)/*[position()=1]) 2017; 13 Han (D0TA01379J-(cit34)/*[position()=1]) 2019; 57 Yao (D0TA01379J-(cit53)/*[position()=1]) 2019; 7 Smith (D0TA01379J-(cit9)/*[position()=1]) 2016; 28 Sheberla (D0TA01379J-(cit21)/*[position()=1]) 2017; 16 Jiao (D0TA01379J-(cit8)/*[position()=1]) 2018; 30 Li (D0TA01379J-(cit28)/*[position()=1]) 2010; 22 Kambe (D0TA01379J-(cit27)/*[position()=1]) 2013; 135 Dimoulas (D0TA01379J-(cit38)/*[position()=1]) 2006; 89 Campbell (D0TA01379J-(cit22)/*[position()=1]) 2015; 54 Di Bartolomeo (D0TA01379J-(cit29)/*[position()=1]) 2016; 606 Hmadeh (D0TA01379J-(cit43)/*[position()=1]) 2012; 24 Skorupskii (D0TA01379J-(cit11)/*[position()=1]) 2020; 12 Li (D0TA01379J-(cit47)/*[position()=1]) 2018; 28 Li (D0TA01379J-(cit18)/*[position()=1]) 2017; 27 Wu (D0TA01379J-(cit32)/*[position()=1]) 2016; 4 Stassen (D0TA01379J-(cit6)/*[position()=1]) 2017; 46 Yao (D0TA01379J-(cit24)/*[position()=1]) 2019; 58 Zhao (D0TA01379J-(cit30)/*[position()=1]) 2015; 2015 Su (D0TA01379J-(cit36)/*[position()=1]) 2017; 13 Campbell (D0TA01379J-(cit19)/*[position()=1]) 2015; 137 Xiang (D0TA01379J-(cit40)/*[position()=1]) 2015; 11 Meyer (D0TA01379J-(cit45)/*[position()=1]) 2011; 23 Ding (D0TA01379J-(cit42)/*[position()=1]) 2017; 5 Yao (D0TA01379J-(cit25)/*[position()=1]) 2017; 56 Xie (D0TA01379J-(cit41)/*[position()=1]) 2013; 1 Song (D0TA01379J-(cit16)/*[position()=1]) 2020; 59 Chadi (D0TA01379J-(cit37)/*[position()=1]) 1997; 79 Maeda (D0TA01379J-(cit26)/*[position()=1]) 2016; 32 Farag (D0TA01379J-(cit35)/*[position()=1]) 2010; 495 |
References_xml | – volume: 28 start-page: 1705833 year: 2018 ident: D0TA01379J-(cit48)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201705833 – volume: 11 start-page: 4829 year: 2015 ident: D0TA01379J-(cit40)/*[position()=1] publication-title: Small doi: 10.1002/smll.201501298 – volume: 30 start-page: e1703663 year: 2018 ident: D0TA01379J-(cit8)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201703663 – volume: 89 start-page: 252110 year: 2006 ident: D0TA01379J-(cit38)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.2410241 – volume: 9 start-page: 7405 year: 2018 ident: D0TA01379J-(cit12)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/C8SC02471E – volume: 27 start-page: 1702067 year: 2017 ident: D0TA01379J-(cit18)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201702067 – volume: 26 start-page: 2619 year: 2014 ident: D0TA01379J-(cit49)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201304621 – volume: 38 start-page: 1477 year: 2009 ident: D0TA01379J-(cit5)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/b802426j – volume: 54 start-page: 4349 year: 2015 ident: D0TA01379J-(cit22)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201411854 – volume: 606 start-page: 1 year: 2016 ident: D0TA01379J-(cit29)/*[position()=1] publication-title: Phys. Rep. doi: 10.1016/j.physrep.2015.10.003 – volume: 15 start-page: e1804303 year: 2019 ident: D0TA01379J-(cit33)/*[position()=1] publication-title: Small doi: 10.1002/smll.201804303 – volume: 226 start-page: 478 year: 2016 ident: D0TA01379J-(cit46)/*[position()=1] publication-title: Sens. Actuators, B doi: 10.1016/j.snb.2015.12.005 – volume: 16 start-page: 220 year: 2017 ident: D0TA01379J-(cit21)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat4766 – volume: 4 start-page: 10804 year: 2016 ident: D0TA01379J-(cit32)/*[position()=1] publication-title: J. Mater. Chem. C doi: 10.1039/C6TC03856E – volume: 28 start-page: 5229 year: 2016 ident: D0TA01379J-(cit52)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201506457 – volume: 111 start-page: 171103 year: 2017 ident: D0TA01379J-(cit50)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.5001053 – start-page: 1905227 year: 2019 ident: D0TA01379J-(cit3)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201905227 – volume: 453 start-page: 207 year: 2008 ident: D0TA01379J-(cit2)/*[position()=1] publication-title: Nature doi: 10.1038/nature06900 – volume: 7 start-page: 10431 year: 2019 ident: D0TA01379J-(cit20)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C9TA02169H – volume: 55 start-page: 3566 year: 2016 ident: D0TA01379J-(cit10)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201506219 – volume: 139 start-page: 1360 year: 2017 ident: D0TA01379J-(cit23)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b08511 – volume: 117 start-page: 2517 year: 2016 ident: D0TA01379J-(cit31)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.6b00361 – volume: 136 start-page: 8859 year: 2014 ident: D0TA01379J-(cit17)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja502765n – volume: 23 start-page: 70 year: 2011 ident: D0TA01379J-(cit45)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201003065 – volume: 12 start-page: 131 year: 2020 ident: D0TA01379J-(cit11)/*[position()=1] publication-title: Nat. Chem. doi: 10.1038/s41557-019-0372-0 – volume: 5 start-page: 285 year: 2017 ident: D0TA01379J-(cit42)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C6TA07100G – volume: 46 start-page: 3185 year: 2017 ident: D0TA01379J-(cit6)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00122C – volume: 28 start-page: 1705237 year: 2018 ident: D0TA01379J-(cit47)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201705237 – volume: 58 start-page: 10909 year: 2019 ident: D0TA01379J-(cit13)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201903980 – volume: 59 start-page: 1118 year: 2020 ident: D0TA01379J-(cit16)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201911543 – volume: 28 start-page: 5264 year: 2016 ident: D0TA01379J-(cit9)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.6b02528 – volume: 57 start-page: 528 year: 2019 ident: D0TA01379J-(cit34)/*[position()=1] publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.12.074 – volume: 495 start-page: 116 year: 2010 ident: D0TA01379J-(cit35)/*[position()=1] publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2010.01.098 – volume: 30 start-page: 1705112 year: 2018 ident: D0TA01379J-(cit7)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201705112 – volume: 63 start-page: 2671 year: 2016 ident: D0TA01379J-(cit39)/*[position()=1] publication-title: IEEE Trans. Electron. Devices doi: 10.1109/TED.2016.2565565 – volume: 24 start-page: 3511 year: 2012 ident: D0TA01379J-(cit43)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/cm301194a – volume: 6 start-page: 1800561 year: 2018 ident: D0TA01379J-(cit14)/*[position()=1] publication-title: Adv. Opt. Mater. doi: 10.1002/adom.201800561 – volume: 31 start-page: e1900820 year: 2019 ident: D0TA01379J-(cit4)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201900820 – volume: 79 start-page: 4834 year: 1997 ident: D0TA01379J-(cit37)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.79.4834 – volume: 56 start-page: 16510 year: 2017 ident: D0TA01379J-(cit25)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201709558 – volume: 13 start-page: 1701687 year: 2017 ident: D0TA01379J-(cit36)/*[position()=1] publication-title: Small doi: 10.1002/smll.201701687 – volume: 21 start-page: 4228 year: 2011 ident: D0TA01379J-(cit44)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201101592 – volume: 13 start-page: 1604033 year: 2017 ident: D0TA01379J-(cit51)/*[position()=1] publication-title: Small doi: 10.1002/smll.201604033 – volume: 1 start-page: 8567 year: 2013 ident: D0TA01379J-(cit41)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/c3ta11384a – volume: 58 start-page: 14915 year: 2019 ident: D0TA01379J-(cit24)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201907772 – volume: 7 start-page: 4662 year: 2019 ident: D0TA01379J-(cit15)/*[position()=1] publication-title: J. Mater. Chem. C doi: 10.1039/C8TC03780A – volume: 2015 start-page: 1 year: 2015 ident: D0TA01379J-(cit30)/*[position()=1] publication-title: J. Nanomater. – volume: 22 start-page: 2743 year: 2010 ident: D0TA01379J-(cit28)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.200904383 – volume: 59 start-page: 6652 year: 2020 ident: D0TA01379J-(cit1)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201911384 – volume: 137 start-page: 13780 year: 2015 ident: D0TA01379J-(cit19)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b09600 – volume: 32 start-page: 2527 year: 2016 ident: D0TA01379J-(cit26)/*[position()=1] publication-title: Langmuir doi: 10.1021/acs.langmuir.6b00156 – volume: 135 start-page: 2462 year: 2013 ident: D0TA01379J-(cit27)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja312380b – volume: 7 start-page: 18397 year: 2019 ident: D0TA01379J-(cit53)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C9TA05226G |
SSID | ssj0000800699 |
Score | 2.5173514 |
Snippet | The application of Schottky junction in self-powered devices is limited by low efficiency in both separation and transport of photogenerated electrons/holes.... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 985 |
SubjectTerms | coordination polymers diodes electrons films (materials) Gas sensors Gases Interlayers Metal-organic frameworks Photometers Quantum efficiency Schottky diodes Thin films Vapors |
Title | A highly oriented conductive MOF thin film-based Schottky diode for self-powered light and gas detection |
URI | https://www.proquest.com/docview/2400968221 https://www.proquest.com/docview/2477624948 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELe67gUeEF8THQMZwQuKMpzv5DEam0ph8EAnjafKiZ0t0KXVmgiNP4-_jDs7cQIb0uAlqmw3bXI_353P598R8irhcc7zwrFd6cQ2aEmYcyFLbAlTSaB99HOV5fsxnJ74s9PgdDT6OchaaupsP_9x47mS_5EqtIFc8ZTsP0jW3BQa4DPIF64gYbjeSsaphWzDyytrhWzF6DvC6hYJXDEd6PjTEXiVZYXUSxc2WiuhODfr-tuVJcqV0HTfG7ks7DXWSoP-JS7V1X7CGd9YQtYqUav6iwcLzq5-SivvysbtW6k-AdT1KEZxfb5Qhei781qYkmui-Qd81cYH7NSA9YtuPAbban8-b0qT61O2Ie5pU9qz0gDzfVnzM_6dt7lGzUUzjGi4ajPeGQQ5XRYw5DjVelkO23T1205zx0OAxgM1nDBdB6g16QnTJUmvmQvmIdvqWzZPkXkxmfVGsUsE-MNWmgxGtXfvJYv-u1tk24Wlijsm2-nh_N0HE-lDnzxUhUzNg3U8uV7ypr_B755Rv9zZuuxq0SifZ36f3GtFTVONvAdkJKuH5O6AwvIROU-pxiDtMEh7DFLAIEUM0h6DtMMgVRikABA6xCBVGKQAFgoYpAaDj8nJ0eH8YGq31Tvs3Pe92uZR5mdSZOCieyIMEzcCdZC7jscDVARBzuHV5DGTDi88GQVcOg40R37GuJeBF7lDxtWqkk8ITUIOPbBYEHHsZy6Pk9zJCsGKiDkiCL0Jed29uUXeUttjhZXl4rqYJuSlGbvWhC43jtrrBLBoJ_xmgenWSQgetTMhL0w3TC_cY-OVXDU4JgL3AjmXJmQHBGd-Q7Caq3t_nZDdmzsWa1Hs3urvPSV3-omzR8b1ZSOfgXNcZ89b9P0CGxa7cA |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+highly+oriented+conductive+MOF+thin+film-based+Schottky+diode+for+self-powered+light+and+gas+detection&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Cao%2C+Lin-An&rft.au=Yao%2C+Ming-Shui&rft.au=Jiang%2C+Hui-Jie&rft.au=Kitagawa%2C+Susumu&rft.date=2020-05-12&rft.issn=2050-7488&rft.eissn=2050-7496&rft.volume=8&rft.issue=18&rft.spage=9085&rft.epage=9090&rft_id=info:doi/10.1039%2FD0TA01379J&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D0TA01379J |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon |