Integrated near-infrared fiber-optic photoacoustic sensing demodulator for ultra-high sensitivity gas detection

An integrated near-infrared fiber-optic photoacoustic sensing demodulator was established for ultra-high sensitivity gas detection. The demodulator has capacities of interference spectrum acquisition and calculation, laser modulation control as well as digital lock-in amplification. FPGA was utilize...

Full description

Saved in:
Bibliographic Details
Published inPhotoacoustics (Munich) Vol. 33; p. 100560
Main Authors Zhao, Xinyu, Li, Chenxi, Qi, Hongchao, Huang, Jiayu, Xu, Yufu, Wang, Zhengzhi, Han, Xiao, Guo, Min, Chen, Ke
Format Journal Article
LanguageEnglish
Published Elsevier GmbH 01.10.2023
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:An integrated near-infrared fiber-optic photoacoustic sensing demodulator was established for ultra-high sensitivity gas detection. The demodulator has capacities of interference spectrum acquisition and calculation, laser modulation control as well as digital lock-in amplification. FPGA was utilized to realize all the control and signal processing functions, which immensely improved the integration and stability of the system. The photoacoustic signal detection based on fiber-optic Fabry–Perot (F-P) acoustic sensor was realized by applying ultra-high resolution spectral demodulation technique. The detectable frequency of photoacoustic signal achieved 10 kHz. The system integrated lock-in amplification technology, which made the noise sound pressure and dynamic response range of sound pressure detection reached 3.7 μPa/√Hz @1 kHz and 142 dB, respectively. The trace C2H2 gas was tested with a multi-pass resonant photoacoustic cell. Ultra-high sensitivity gas detection was accomplished, which was based on high acoustic detection sensitivity and the matching digital lock-in amplification. The system detection limit and normalized noise equivalent absorption (NNEA) coefficient were reached 3.5 ppb and 6.7 × 10−10 cm−1WHz−1/2, respectively. The devised demodulator can be applied for long-distance gas measurement, which depends on the fact that both the near-infrared photoacoustic excitation light and the probe light employ optical fiber as transmission medium.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2213-5979
2213-5979
DOI:10.1016/j.pacs.2023.100560