Regulator of G-Protein Signaling 3 Isoform 1 (PDZ-RGS3) Enhances Canonical Wnt Signaling and Promotes Epithelial Mesenchymal Transition
The Wnt β-catenin pathway controls numerous cellular processes including cell differentiation and cell-fate decisions. Wnt ligands engage Frizzled receptors and the low-density-lipoprotein-related protein 5/6 (LRP5/6) receptor complex leading to the recruitment of Dishevelled (Dvl) and Axin1 to the...
Saved in:
Published in | The Journal of biological chemistry Vol. 287; no. 40; pp. 33480 - 33487 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
28.09.2012
American Society for Biochemistry and Molecular Biology |
Subjects | |
Online Access | Get full text |
ISSN | 0021-9258 1083-351X 1083-351X |
DOI | 10.1074/jbc.M112.361873 |
Cover
Loading…
Summary: | The Wnt β-catenin pathway controls numerous cellular processes including cell differentiation and cell-fate decisions. Wnt ligands engage Frizzled receptors and the low-density-lipoprotein-related protein 5/6 (LRP5/6) receptor complex leading to the recruitment of Dishevelled (Dvl) and Axin1 to the plasma membrane. Axin1 has a regulator of G-protein signaling (RGS) domain that binds adenomatous polyposis coli and Gα subunits, thereby providing a mechanism by which Gα subunits can affect β-catenin levels. Here we show that Wnt signaling enhances the expression of another RGS domain-containing protein, PDZ-RGS3. Reducing PDZ-RGS3 levels impaired Wnt3a-induced activation of the canonical pathway. PDZ-RGS3 bound GSK3β and decreased its catalytic activity toward β-catenin. PDZ-RGS3 overexpression enhanced Snail1 and led to morphological and biochemical changes reminiscent of epithelial mesenchymal transition (EMT). These results indicate that PDZ-RGS3 can enhance signals generated by the Wnt canonical pathway and that plays a pivotal role in EMT.
Background: Wnt signaling is subject to regulation by regulator of G-protein signaling domain-containing proteins.
Results: PDZ-RGS3 binds GSK3β and inhibits its activity.
Conclusion: PDZ-RGS3 enhances canonical Wnt signaling.
Significance: PDZ-RGS3 expression may promote epithelial to mesenchymal transition. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0021-9258 1083-351X 1083-351X |
DOI: | 10.1074/jbc.M112.361873 |