EPRS/GluRS promotes gastric cancer development via WNT/GSK-3β/β-catenin signaling pathway
Background Glutamyl-prolyl-tRNA synthetase (EPRS/GluRS) is primarily part of the multi-synthetase complex that may play a key role in cancer development. However, the biological function, molecular mechanism, and inhibitor of EPRS have not been investigated in gastric cancer (GC). Methods Immunohist...
Saved in:
Published in | Gastric cancer : official journal of the International Gastric Cancer Association and the Japanese Gastric Cancer Association Vol. 24; no. 5; pp. 1021 - 1036 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Singapore
Springer Singapore
01.09.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Background
Glutamyl-prolyl-tRNA synthetase (EPRS/GluRS) is primarily part of the multi-synthetase complex that may play a key role in cancer development. However, the biological function, molecular mechanism, and inhibitor of EPRS have not been investigated in gastric cancer (GC).
Methods
Immunohistochemistry was performed to detect the expression of EPRS in human gastric tumor tissues. Knocking down of EPRS, cell-derived xenograft mouse model, and patient-derived xenograft mouse model was used to identify the biological function of EPRS. Immunoprecipitation was applied to elucidate the interaction between EPRS and SCYL2. Computer docking model and multiple in vitro and in vivo experiments were conducted to discover EPRS inhibitors.
Results
Here, we report that EPRS is frequently overexpressed in GC tissues compared to that adjacent controls and its overexpression predicts poor prognosis in GC patients. Functionally, high expression of EPRS positively co-relates with GC development both in vitro and in vivo. Mechanistically, EPRS directly binds with SCYL2 to enhance the activation of WNT/GSK-3β/β-catenin signaling pathway and the accumulation of β-catenin in the nuclear, leading to GC cell proliferation and tumor growth. Moreover, we identified that xanthoangelol (XA) and 4-hydroxyderricin (4-HD) can directly bind to EPRS to block WNT/GSK-3β/β-catenin signaling pathway. More importantly, XA and 4-HD restrain gastric cancer patient-derived xenograft tumor growth and
Helicobacter pylori
combined with alcohol-induced atrophic gastritis and gastric tumorigenesis.
Conclusion
These findings unveil a promising strategy for GC prevention and therapy by targeting EPRS-mediated WNT/GSK-3β/β-catenin cascades. Moreover, XA and 4-HD may be effective reagents used for GC prevention and therapy. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1436-3291 1436-3305 |
DOI: | 10.1007/s10120-021-01180-x |