Upgrading Voltage Control Method Based on Photovoltaic Penetration Rate

In this paper, we propose a comprehensive scheme to determine a suitable method and timing for upgrading the voltage control method. Voltage control methods are expected to be upgraded in accordance with the photovoltaic (PV) penetration in distribution systems. The suitable method and timing detail...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on smart grid Vol. 9; no. 5; pp. 3994 - 4003
Main Authors Akagi, Satoru, Takahashi, Ryo, Kaneko, Akihisa, Ito, Masakazu, Yoshinaga, Jun, Hayashi, Yasuhiro, Asano, Hiroshi, Konda, Hiromi
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.09.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this paper, we propose a comprehensive scheme to determine a suitable method and timing for upgrading the voltage control method. Voltage control methods are expected to be upgraded in accordance with the photovoltaic (PV) penetration in distribution systems. The suitable method and timing detailed in this paper are based on the limit of the PV penetration rate, which is constrained by the regulated voltage deviation. The upgrade process involves moving the on-load tap changer (OLTC) control method from the conventional scalar line drop compensator (LDC) method to the vector LDC method or centralized control method. Then, a static var compensator (SVC) or step voltage regulator (SVR) is installed. The locations of the SVR and SVC are determined to maximize the PV penetration rate. The suitable method and timing are demonstrated using a general distribution system. In addition to the numerical simulations, experiments are performed using an active network system with energy resources. The experimental results are consistent with the numerical simulation results, thus validating the proposed scheme. The maximum PV penetration rate obtained using the OLTC control method is 55%. Whereas, the installation of the SVR and SVC increased the rate to 95% and 100%, respectively.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1949-3053
1949-3061
DOI:10.1109/TSG.2016.2645706