The LONI Pipeline Processing Environment

The analysis of raw data in neuroimaging has become a computationally entrenched process with many intricate steps run on increasingly larger datasets. Many software packages exist that provide either complete analyses or specific steps in an analysis. These packages often possess diverse input and...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 19; no. 3; pp. 1033 - 1048
Main Authors Rex, David E, Ma, Jeffrey Q, Toga, Arthur W
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.07.2003
Elsevier Limited
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The analysis of raw data in neuroimaging has become a computationally entrenched process with many intricate steps run on increasingly larger datasets. Many software packages exist that provide either complete analyses or specific steps in an analysis. These packages often possess diverse input and output requirements, utilize different file formats, run in particular environments, and have limited abilities with certain types of data. The combination of these packages to achieve more sensitive and accurate results has become a common tactic in brain mapping studies but requires much work to ensure valid interoperation between programs. The handling, organization, and storage of intermediate data can prove difficult as well. The LONI Pipeline Processing Environment is a simple, efficient, and distributed computing solution to these problems enabling software inclusion from different laboratories in different environments. It is used here to derive a T1-weighted MRI atlas of the human brain from 452 normal young adult subjects with fully automated processing. The LONI Pipeline Processing Environment’s parallel processing efficiency using an integrated client/server dataflow model was 80.9% when running the atlas generation pipeline from a PC client (Acer TravelMate 340T) on 48 dedicated server processors (Silicon Graphics Inc. Origin 3000). The environment was 97.5% efficient when the same analysis was run on eight dedicated processors.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1053-8119
1095-9572
DOI:10.1016/S1053-8119(03)00185-X