Tuning terminal aromatics of electron acceptors to achieve high-efficiency organic solar cells
Herein, two new electron acceptors, BTTPC and BTTPC-Br, are developed through extending the conjugation of terminal electron accepting moieties with thiophene and bromine units. Such a structural design effectively improves the hole transfer of exciton dynamics in blends, revealing that BTTPC-Br and...
Saved in:
Published in | Journal of materials chemistry. A, Materials for energy and sustainability Vol. 7; no. 48; pp. 27632 - 27639 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Herein, two new electron acceptors, BTTPC and BTTPC-Br, are developed through extending the conjugation of terminal electron accepting moieties with thiophene and bromine units. Such a structural design effectively improves the hole transfer of exciton dynamics in blends, revealing that BTTPC-Br and BTTPC based blends, in the presence of a smaller energetic offset as a driving force, exhibit faster hole transfer from acceptors to the polymeric donor interface, 4 times (BTTPC-Br) and 1.5 times (BTTPC) faster than 0.44 picoseconds of unmodified Y5. As a result, organic solar cells (OSCs) based on the BTTPC-Br acceptor, outperforming those of BTTPC:PBDB-T and Y5:PBDB-T, reach a power conversion efficiency of 15.22%, which is so far one of the highest among the single junction OSCs made with PBDB-T polymer donor.
The structural tuning of non-fullerene acceptors with extended terminal aromatics enables faster hole transfer from the acceptor to the donor at smaller energy offsets, thereby achieving high efficiency in organic solar cells. |
---|---|
Bibliography: | 10.1039/c9ta11285e Electronic supplementary information (ESI) available: Details of chemical synthesis, device fabrication, measurements, and characterization; DFT calculation; charge mobilities; TA spectra; and 2D GIWAXS patterns. See DOI ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 2050-7488 2050-7496 2050-7496 |
DOI: | 10.1039/c9ta11285e |