Evolution of insulin at the edge of foldability and its medical implications
Proteins have evolved to be foldable, and yet determinants of foldability may be inapparent once the native state is reached. Insight has emerged from studies of diseases of protein misfolding, exemplified by monogenic diabetes mellitus due to mutations in proinsulin leading to endoplasmic reticulum...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 117; no. 47; pp. 29618 - 29628 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
24.11.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Proteins have evolved to be foldable, and yet determinants of foldability may be inapparent once the native state is reached. Insight has emerged from studies of diseases of protein misfolding, exemplified by monogenic diabetes mellitus due to mutations in proinsulin leading to endoplasmic reticulum stress and β-cell death. Cellular foldability of human proinsulin requires an invariant Phe within a conserved crevice at the receptor-binding surface (position B24). Any substitution, even related aromatic residue TyrB24, impairs insulin biosynthesis and secretion. As a seeming paradox, a monomeric TyrB24 insulin analog exhibits a native-like structure in solution with only a modest decrement in stability. Packing of TyrB24 is similar to that of PheB24, adjoining core cystine B19–A20 to seal the core; the analog also exhibits native self-assembly. Although affinity for the insulin receptor is decreased ∼20-fold, biological activities in cells and rats were within the range of natural variation. Together, our findings suggest that the invariance of PheB24 among vertebrate insulins and insulin-like growth factors reflects an essential role in enabling efficient protein folding, trafficking, and secretion, a function that is inapparent in native structures. In particular, we envision that the para-hydroxyl group of TyrB24 hinders pairing of cystine B19–A20 in an obligatory on-pathway folding intermediate. The absence of genetic variation at B24 and other conserved sites near this disulfide bridge—excluded due to β-cell dysfunction—suggests that insulin has evolved to the edge of foldability. Nonrobustness of a protein’s fitness landscape underlies both a rare monogenic syndrome and “diabesity” as a pandemic disease of civilization. |
---|---|
AbstractList | Proteins have evolved to be foldable, and yet determinants of foldability may be inapparent once the native state is reached. Insight has emerged from studies of diseases of protein misfolding, exemplified by monogenic diabetes mellitus due to mutations in proinsulin leading to endoplasmic reticulum stress and β-cell death. Cellular foldability of human proinsulin requires an invariant Phe within a conserved crevice at the receptor-binding surface (position B24). Any substitution, even related aromatic residue TyrB24, impairs insulin biosynthesis and secretion. As a seeming paradox, a monomeric TyrB24 insulin analog exhibits a native-like structure in solution with only a modest decrement in stability. Packing of TyrB24 is similar to that of PheB24, adjoining core cystine B19–A20 to seal the core; the analog also exhibits native self-assembly. Although affinity for the insulin receptor is decreased ∼20-fold, biological activities in cells and rats were within the range of natural variation. Together, our findings suggest that the invariance of PheB24 among vertebrate insulins and insulin-like growth factors reflects an essential role in enabling efficient protein folding, trafficking, and secretion, a function that is inapparent in native structures. In particular, we envision that the para-hydroxyl group of TyrB24 hinders pairing of cystine B19–A20 in an obligatory on-pathway folding intermediate. The absence of genetic variation at B24 and other conserved sites near this disulfide bridge—excluded due to β-cell dysfunction—suggests that insulin has evolved to the edge of foldability. Nonrobustness of a protein’s fitness landscape underlies both a rare monogenic syndrome and “diabesity” as a pandemic disease of civilization. Significance Protein sequences evolve under multiple constraints, including structure, stability, and bioactivity. Yet hidden constraints (inapparent in the native structure) may underlie informational content of protein sequences. An invariant aromatic residue in vertebrate insulins—a phenylalanine at its receptor-binding surface—is required for cellular folding efficiency. Any amino acid substitution impairs cellular biosynthesis, even tyrosine, whose related aromatic side chain preserves native structure and allows function within the range of natural variation. Our results suggest that sequences required for insulin’s bioactivity (similar in all vertebrates) are frozen at the edge of nonfoldability. Whereas evolved regulatory networks are ordinarily robust, proinsulin’s precarious foldability both underlies a rare monogenic form of diabetes and provides an evolutionary backdrop to the present obesity-related diabetes pandemic. Proteins have evolved to be foldable, and yet determinants of foldability may be inapparent once the native state is reached. Insight has emerged from studies of diseases of protein misfolding, exemplified by monogenic diabetes mellitus due to mutations in proinsulin leading to endoplasmic reticulum stress and β-cell death. Cellular foldability of human proinsulin requires an invariant Phe within a conserved crevice at the receptor-binding surface (position B24). Any substitution, even related aromatic residue Tyr B24 , impairs insulin biosynthesis and secretion. As a seeming paradox, a monomeric Tyr B24 insulin analog exhibits a native-like structure in solution with only a modest decrement in stability. Packing of Tyr B24 is similar to that of Phe B24 , adjoining core cystine B19–A20 to seal the core; the analog also exhibits native self-assembly. Although affinity for the insulin receptor is decreased ∼20-fold, biological activities in cells and rats were within the range of natural variation. Together, our findings suggest that the invariance of Phe B24 among vertebrate insulins and insulin-like growth factors reflects an essential role in enabling efficient protein folding, trafficking, and secretion, a function that is inapparent in native structures. In particular, we envision that the para -hydroxyl group of Tyr B24 hinders pairing of cystine B19–A20 in an obligatory on-pathway folding intermediate. The absence of genetic variation at B24 and other conserved sites near this disulfide bridge—excluded due to β-cell dysfunction—suggests that insulin has evolved to the edge of foldability. Nonrobustness of a protein’s fitness landscape underlies both a rare monogenic syndrome and “diabesity” as a pandemic disease of civilization. Protein sequences evolve under multiple constraints, including structure, stability, and bioactivity. Yet hidden constraints (inapparent in the native structure) may underlie informational content of protein sequences. An invariant aromatic residue in vertebrate insulins—a phenylalanine at its receptor-binding surface—is required for cellular folding efficiency. Any amino acid substitution impairs cellular biosynthesis, even tyrosine, whose related aromatic side chain preserves native structure and allows function within the range of natural variation. Our results suggest that sequences required for insulin’s bioactivity (similar in all vertebrates) are frozen at the edge of nonfoldability. Whereas evolved regulatory networks are ordinarily robust, proinsulin’s precarious foldability both underlies a rare monogenic form of diabetes and provides an evolutionary backdrop to the present obesity-related diabetes pandemic. Proteins have evolved to be foldable, and yet determinants of foldability may be inapparent once the native state is reached. Insight has emerged from studies of diseases of protein misfolding, exemplified by monogenic diabetes mellitus due to mutations in proinsulin leading to endoplasmic reticulum stress and β-cell death. Cellular foldability of human proinsulin requires an invariant Phe within a conserved crevice at the receptor-binding surface (position B24). Any substitution, even related aromatic residue Tyr B24 , impairs insulin biosynthesis and secretion. As a seeming paradox, a monomeric Tyr B24 insulin analog exhibits a native-like structure in solution with only a modest decrement in stability. Packing of Tyr B24 is similar to that of Phe B24 , adjoining core cystine B19–A20 to seal the core; the analog also exhibits native self-assembly. Although affinity for the insulin receptor is decreased ∼20-fold, biological activities in cells and rats were within the range of natural variation. Together, our findings suggest that the invariance of Phe B24 among vertebrate insulins and insulin-like growth factors reflects an essential role in enabling efficient protein folding, trafficking, and secretion, a function that is inapparent in native structures. In particular, we envision that the para -hydroxyl group of Tyr B24 hinders pairing of cystine B19–A20 in an obligatory on-pathway folding intermediate. The absence of genetic variation at B24 and other conserved sites near this disulfide bridge—excluded due to β-cell dysfunction—suggests that insulin has evolved to the edge of foldability. Nonrobustness of a protein’s fitness landscape underlies both a rare monogenic syndrome and “diabesity” as a pandemic disease of civilization. Proteins have evolved to be foldable, and yet determinants of foldability may be inapparent once the native state is reached. Insight has emerged from studies of diseases of protein misfolding, exemplified by monogenic diabetes mellitus due to mutations in proinsulin leading to endoplasmic reticulum stress and β-cell death. Cellular foldability of human proinsulin requires an invariant Phe within a conserved crevice at the receptor-binding surface (position B24). Any substitution, even related aromatic residue Tyr , impairs insulin biosynthesis and secretion. As a seeming paradox, a monomeric Tyr insulin analog exhibits a native-like structure in solution with only a modest decrement in stability. Packing of Tyr is similar to that of Phe , adjoining core cystine B19-A20 to seal the core; the analog also exhibits native self-assembly. Although affinity for the insulin receptor is decreased ∼20-fold, biological activities in cells and rats were within the range of natural variation. Together, our findings suggest that the invariance of Phe among vertebrate insulins and insulin-like growth factors reflects an essential role in enabling efficient protein folding, trafficking, and secretion, a function that is inapparent in native structures. In particular, we envision that the -hydroxyl group of Tyr hinders pairing of cystine B19-A20 in an obligatory on-pathway folding intermediate. The absence of genetic variation at B24 and other conserved sites near this disulfide bridge-excluded due to β-cell dysfunction-suggests that insulin has evolved to the edge of foldability. Nonrobustness of a protein's fitness landscape underlies both a rare monogenic syndrome and "diabesity" as a pandemic disease of civilization. |
Author | Haataja, Leena Sun, Jinhong Liu, Ming Arvan, Peter Wickramasinghe, Nalinda P. Chen, Yen-Shan Rege, Nischay K. Ismail-Beigi, Faramarz Dhayalan, Balamurugan Rahimi, Leili Yang, Yanwu Weiss, Michael A. Phillips, Nelson B. Guo, Huan |
Author_xml | – sequence: 1 givenname: Nischay K. surname: Rege fullname: Rege, Nischay K. – sequence: 2 givenname: Ming surname: Liu fullname: Liu, Ming – sequence: 3 givenname: Yanwu surname: Yang fullname: Yang, Yanwu – sequence: 4 givenname: Balamurugan surname: Dhayalan fullname: Dhayalan, Balamurugan – sequence: 5 givenname: Nalinda P. surname: Wickramasinghe fullname: Wickramasinghe, Nalinda P. – sequence: 6 givenname: Yen-Shan surname: Chen fullname: Chen, Yen-Shan – sequence: 7 givenname: Leili surname: Rahimi fullname: Rahimi, Leili – sequence: 8 givenname: Huan surname: Guo fullname: Guo, Huan – sequence: 9 givenname: Leena surname: Haataja fullname: Haataja, Leena – sequence: 10 givenname: Jinhong surname: Sun fullname: Sun, Jinhong – sequence: 11 givenname: Faramarz surname: Ismail-Beigi fullname: Ismail-Beigi, Faramarz – sequence: 12 givenname: Nelson B. surname: Phillips fullname: Phillips, Nelson B. – sequence: 13 givenname: Peter surname: Arvan fullname: Arvan, Peter – sequence: 14 givenname: Michael A. surname: Weiss fullname: Weiss, Michael A. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33154160$$D View this record in MEDLINE/PubMed |
BookMark | eNpVkM1rGzEUxEVxaGy3555aBDlv8vSx0u6lUIKTFAy5tGeh1UqJzFpyVlpD_vvI2HFaEOjxZvTTMAs0CzFYhL4RuCYg2c0u6HRNgUALDSHyE5qXkVSCtzBDcwAqq4ZTfokWKW0AoK0b-IwuGSM1JwLmaL3ax2HKPgYcHfYhTYMPWGecny22_ZM9rF0cet35wedXrEOPfU54a3tv9ID9djeU4UBIX9CF00OyX0_3Ev29W_25fajWj_e_b3-tK8M5y5WQTkgpGXd1a_peO9GauqekqF1J1QEhWnZNWdYGhGgshSL3hkvHpNOGLdHPI3c3dSWHsSGPelC70W_1-Kqi9up_Jfhn9RT3SkpgdU0L4OoEGOPLZFNWmziNoWRWlAvelENlcd0cXWaMKY3WnX8goA71q0P96qP-8uLHv8HO_ve-i-H70bBJOY5nnYpWFgJnbzjzjVQ |
CitedBy_id | crossref_primary_10_1073_pnas_2103518118 crossref_primary_10_1007_s13300_023_01468_4 crossref_primary_10_1007_s00018_021_03871_1 crossref_primary_10_1021_jacs_1c09611 crossref_primary_10_2337_db21_0422 crossref_primary_10_1038_s41574_021_00510_4 crossref_primary_10_1016_S1957_2557_21_00178_4 crossref_primary_10_3390_cells12071008 crossref_primary_10_1002_advs_202205389 crossref_primary_10_1002_cbic_202300818 crossref_primary_10_1007_s11892_022_01447_2 crossref_primary_10_3390_biom13010152 crossref_primary_10_1016_j_molmet_2021_101229 crossref_primary_10_1039_D2SC05343H crossref_primary_10_1172_JCI142242 crossref_primary_10_3389_fendo_2021_754693 crossref_primary_10_3389_fendo_2022_821091 crossref_primary_10_1007_s00125_021_05569_2 crossref_primary_10_3390_biom13020257 crossref_primary_10_3389_fendo_2022_821069 crossref_primary_10_1016_j_metabol_2021_154870 crossref_primary_10_32352_0367_3057_1_23_04 crossref_primary_10_1042_BST20210244 crossref_primary_10_1038_s41591_021_01418_2 |
Cites_doi | 10.1016/j.gde.2014.08.009 10.2337/diabetes.52.2.409 10.1074/jbc.C400475200 10.1021/bi011839 10.1016/j.mam.2015.01.001 10.1074/jbc.M115.708347 10.1073/pnas.0702697104 10.1007/s11154-010-9151-3 10.1016/S0196-9781(01)00423-5 10.1038/nrd.2015.36 10.1073/pnas.1412897111 10.3389/fendo.2011.00048 10.1073/pnas.1314781111 10.1016/j.tem.2010.07.001 10.1074/jbc.M206107200 10.1016/j.febslet.2013.04.044 10.1101/gad.1995910 10.1210/me.2015-1012 10.1073/pnas.79.17.5147 10.1021/bi011021o 10.1074/jbc.M117.808667 10.1074/jbc.M114.572040 10.1089/ars.2007.1860 10.1074/jbc.M114.608562 10.1016/S0959-440X(94)90173-2 10.1353/pbm.2010.0001 10.2337/diab.39.9.1033 10.1016/j.jchb.2016.07.001 10.1139/o97-023 10.1021/bi048025o 10.2337/db06-0658 10.1074/jbc.M113.510065 10.1111/j.1432-1033.1975.tb02190.x 10.1098/rstb.1988.0058 10.1016/0263-7855(96)00009-4 10.1074/jbc.RA119.011389 10.1074/jbc.M109.038042 10.1006/jmbi.1996.0648 10.1016/S0021-9258(19)47269-4 10.1016/j.cmet.2006.07.007 10.1038/286822a0 10.1002/anie.200703521 10.1111/j.2040-1124.2011.00100.x 10.1021/bi001905s 10.2337/diabetes.50.2007.S150 10.1016/S0969-2126(99)80078-1 10.1023/A:1012095115151 10.2337/db20-0636 10.1152/ajpcell.1999.277.1.C121 10.1126/science.181.4096.223 10.1021/bi00070a033 10.1038/nsb0197-10 10.1006/jmbi.1996.0320 10.1371/journal.pone.0013333 10.1016/j.mam.2014.12.001 10.1172/JCI111338 10.2337/db19-1106 10.1021/bi9910070 10.1021/ja071442e 10.1016/S0959-440X(98)80037-7 10.1074/jbc.R109.009936 10.1385/CBB:40:3:143 10.1074/jbc.C111.279927 10.1021/bi0202981 10.1074/jbc.M300906200 10.1016/j.sbi.2004.01.009 10.1016/S0021-9258(18)83355-5 10.1016/0014-5793(95)00062-E 10.1507/endocrj.48.81 10.1074/jbc.M114.588277 10.1016/j.pnmrs.2005.10.001 10.1101/gad.1058003 10.1093/protein/5.6.527 10.1074/jbc.M109.046888 10.1016/S0021-9258(18)52312-7 10.2337/db15-1345 10.1074/jbc.M110.152645 10.1074/jbc.C109.084921 10.1007/s00125-017-4295-2 10.1073/pnas.0707291104 |
ContentType | Journal Article |
Copyright | Copyright National Academy of Sciences Nov 24, 2020 2020 |
Copyright_xml | – notice: Copyright National Academy of Sciences Nov 24, 2020 – notice: 2020 |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 5PM |
DOI | 10.1073/pnas.2010908117 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts |
DatabaseTitleList | CrossRef MEDLINE Virology and AIDS Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 29628 |
ExternalDocumentID | 10_1073_pnas_2010908117 33154160 26970814 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIDDK NIH HHS grantid: R01 DK069764 – fundername: NIDDK NIH HHS grantid: P30 DK020572 – fundername: NIDDK NIH HHS grantid: R01 DK040949 – fundername: NIGMS NIH HHS grantid: T32 GM007250 – fundername: NIDDK NIH HHS grantid: R01 DK048280 – fundername: NIDDK NIH HHS grantid: F30 DK112644 – fundername: HHS | National Institutes of Health (NIH) grantid: R01 DK069764 – fundername: HHS | National Institutes of Health (NIH) grantid: R01 DK040949 – fundername: HHS | National Institutes of Health (NIH) grantid: 1F30DK112644 – fundername: American Diabetes Association (ADA) grantid: 7-13-IN-31 – fundername: HHS | National Institutes of Health (NIH) grantid: R01 DK48280 – fundername: HHS | National Institutes of Health (NIH) grantid: 5T32GM007250-38 – fundername: American Diabetes Association (ADA) grantid: 1-08-RA-149 |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 79B 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACIWK ACNCT ACPRK ADZLD AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM ASUFR BKOMP CS3 D0L DCCCD DIK DNJUQ DOOOF DU5 DWIUU E3Z EBS F5P FRP GX1 HH5 HYE JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHF RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VQA W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZA5 ZCA ~02 ~KM ADACV CGR CUY CVF ECM EIF H13 IPSME NPM AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 5PM |
ID | FETCH-LOGICAL-c443t-67f677734f59cddaf69c5d21c44b416b011a7b89c55c0668e205d2dc47f37fac3 |
IEDL.DBID | RPM |
ISSN | 0027-8424 |
IngestDate | Tue Sep 17 21:22:25 EDT 2024 Thu Oct 10 15:45:15 EDT 2024 Fri Aug 23 01:31:49 EDT 2024 Tue Oct 29 09:12:47 EDT 2024 Fri Feb 02 07:18:38 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 47 |
Keywords | protein structure unfolded protein response protein folding folding efficiency evolutionary medicine |
Language | English |
License | Published under the PNAS license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c443t-67f677734f59cddaf69c5d21c44b416b011a7b89c55c0668e205d2dc47f37fac3 |
Notes | Author contributions: N.K.R., M.L., F.I.-B., N.B.P., P.A., and M.A.W. designed research; N.K.R., M.L., Y.Y., B.D., N.P.W., Y.-S.C., L.R., H.G., L.H., J.S., and F.I.-B. performed research; N.K.R., M.L., Y.Y., B.D., N.P.W., Y.-S.C., and M.A.W. analyzed data; and N.K.R., N.B.P., P.A., and M.A.W. wrote the paper. Edited by Barbara B. Kahn, Beth Israel Deaconess Medical Center, Boston, MA, and approved September 21, 2020 (received for review May 29, 2020) 1N.K.R., M.L., and Y.Y. contributed equally to this work. |
ORCID | 0000-0003-3701-4679 0000-0002-4007-8799 0000-0002-3858-9530 0000-0001-6002-1207 0000-0003-2665-4072 0000-0002-3908-8324 0000-0002-8700-2775 0000-0002-1154-5482 0000-0002-4832-2987 0000-0003-1325-1610 0000-0003-4746-6636 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7703552 |
PMID | 33154160 |
PQID | 2464864827 |
PQPubID | 42026 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7703552 proquest_journals_2464864827 crossref_primary_10_1073_pnas_2010908117 pubmed_primary_33154160 jstor_primary_26970814 |
PublicationCentury | 2000 |
PublicationDate | 2020-11-24 |
PublicationDateYYYYMMDD | 2020-11-24 |
PublicationDate_xml | – month: 11 year: 2020 text: 2020-11-24 day: 24 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2020 |
Publisher | National Academy of Sciences |
Publisher_xml | – name: National Academy of Sciences |
References | e_1_3_4_3_2 e_1_3_4_1_2 e_1_3_4_61_2 e_1_3_4_82_2 e_1_3_4_9_2 e_1_3_4_63_2 e_1_3_4_84_2 e_1_3_4_7_2 e_1_3_4_40_2 e_1_3_4_5_2 e_1_3_4_80_2 e_1_3_4_23_2 e_1_3_4_44_2 e_1_3_4_69_2 e_1_3_4_21_2 e_1_3_4_42_2 e_1_3_4_27_2 e_1_3_4_48_2 e_1_3_4_65_2 e_1_3_4_25_2 e_1_3_4_46_2 e_1_3_4_67_2 e_1_3_4_29_2 Colombo C. (e_1_3_4_32_2) 2008; 118 e_1_3_4_72_2 e_1_3_4_74_2 e_1_3_4_30_2 e_1_3_4_51_2 e_1_3_4_70_2 e_1_3_4_11_2 e_1_3_4_34_2 e_1_3_4_57_2 e_1_3_4_55_2 e_1_3_4_59_2 e_1_3_4_53_2 e_1_3_4_15_2 e_1_3_4_38_2 e_1_3_4_76_2 e_1_3_4_36_2 e_1_3_4_78_2 e_1_3_4_19_2 e_1_3_4_17_2 Conlon J. M. (e_1_3_4_13_2) 2000; 40 e_1_3_4_2_2 e_1_3_4_60_2 e_1_3_4_83_2 e_1_3_4_62_2 e_1_3_4_8_2 e_1_3_4_41_2 e_1_3_4_6_2 e_1_3_4_81_2 e_1_3_4_22_2 e_1_3_4_45_2 e_1_3_4_68_2 e_1_3_4_20_2 e_1_3_4_43_2 e_1_3_4_26_2 e_1_3_4_49_2 e_1_3_4_64_2 e_1_3_4_24_2 e_1_3_4_47_2 e_1_3_4_66_2 e_1_3_4_28_2 Steiner D. F. (e_1_3_4_4_2) 1969; 25 e_1_3_4_71_2 e_1_3_4_73_2 e_1_3_4_52_2 e_1_3_4_50_2 e_1_3_4_79_2 e_1_3_4_12_2 e_1_3_4_33_2 e_1_3_4_58_2 e_1_3_4_54_2 e_1_3_4_10_2 e_1_3_4_31_2 e_1_3_4_75_2 e_1_3_4_16_2 e_1_3_4_37_2 e_1_3_4_77_2 e_1_3_4_14_2 e_1_3_4_35_2 e_1_3_4_56_2 e_1_3_4_18_2 e_1_3_4_39_2 |
References_xml | – ident: e_1_3_4_73_2 doi: 10.1016/j.gde.2014.08.009 – ident: e_1_3_4_27_2 doi: 10.2337/diabetes.52.2.409 – ident: e_1_3_4_30_2 doi: 10.1074/jbc.C400475200 – ident: e_1_3_4_45_2 doi: 10.1021/bi011839 – ident: e_1_3_4_65_2 doi: 10.1016/j.mam.2015.01.001 – volume: 25 start-page: 207 year: 1969 ident: e_1_3_4_4_2 article-title: Proinsulin and the biosynthesis of insulin publication-title: Recent Prog. Horm. Res. contributor: fullname: Steiner D. F. – ident: e_1_3_4_16_2 doi: 10.1074/jbc.M115.708347 – ident: e_1_3_4_33_2 doi: 10.1073/pnas.0702697104 – ident: e_1_3_4_19_2 doi: 10.1007/s11154-010-9151-3 – ident: e_1_3_4_12_2 doi: 10.1016/S0196-9781(01)00423-5 – ident: e_1_3_4_2_2 doi: 10.1038/nrd.2015.36 – ident: e_1_3_4_43_2 doi: 10.1073/pnas.1412897111 – ident: e_1_3_4_42_2 doi: 10.3389/fendo.2011.00048 – ident: e_1_3_4_71_2 doi: 10.1073/pnas.1314781111 – ident: e_1_3_4_24_2 doi: 10.1016/j.tem.2010.07.001 – ident: e_1_3_4_7_2 doi: 10.1074/jbc.M206107200 – ident: e_1_3_4_25_2 doi: 10.1016/j.febslet.2013.04.044 – ident: e_1_3_4_8_2 doi: 10.1101/gad.1995910 – ident: e_1_3_4_54_2 doi: 10.1210/me.2015-1012 – ident: e_1_3_4_38_2 doi: 10.1073/pnas.79.17.5147 – ident: e_1_3_4_46_2 doi: 10.1021/bi011021o – ident: e_1_3_4_41_2 doi: 10.1074/jbc.M117.808667 – ident: e_1_3_4_70_2 doi: 10.1074/jbc.M114.572040 – ident: e_1_3_4_10_2 doi: 10.1089/ars.2007.1860 – ident: e_1_3_4_15_2 doi: 10.1074/jbc.M114.608562 – ident: e_1_3_4_78_2 doi: 10.1016/S0959-440X(94)90173-2 – ident: e_1_3_4_11_2 doi: 10.1353/pbm.2010.0001 – ident: e_1_3_4_36_2 doi: 10.2337/diab.39.9.1033 – ident: e_1_3_4_75_2 doi: 10.1016/j.jchb.2016.07.001 – ident: e_1_3_4_79_2 doi: 10.1139/o97-023 – ident: e_1_3_4_48_2 doi: 10.1021/bi048025o – ident: e_1_3_4_28_2 doi: 10.2337/db06-0658 – ident: e_1_3_4_58_2 – ident: e_1_3_4_53_2 doi: 10.1074/jbc.M113.510065 – ident: e_1_3_4_40_2 doi: 10.1111/j.1432-1033.1975.tb02190.x – ident: e_1_3_4_3_2 doi: 10.1098/rstb.1988.0058 – ident: e_1_3_4_82_2 doi: 10.1016/0263-7855(96)00009-4 – ident: e_1_3_4_35_2 doi: 10.1074/jbc.RA119.011389 – ident: e_1_3_4_67_2 doi: 10.1074/jbc.M109.038042 – ident: e_1_3_4_34_2 doi: 10.1006/jmbi.1996.0648 – ident: e_1_3_4_83_2 doi: 10.1016/S0021-9258(19)47269-4 – ident: e_1_3_4_55_2 doi: 10.1016/j.cmet.2006.07.007 – ident: e_1_3_4_39_2 doi: 10.1038/286822a0 – ident: e_1_3_4_49_2 doi: 10.1002/anie.200703521 – ident: e_1_3_4_64_2 doi: 10.1111/j.2040-1124.2011.00100.x – ident: e_1_3_4_6_2 doi: 10.1021/bi001905s – ident: e_1_3_4_74_2 doi: 10.2337/diabetes.50.2007.S150 – ident: e_1_3_4_68_2 doi: 10.1016/S0969-2126(99)80078-1 – ident: e_1_3_4_84_2 doi: 10.1023/A:1012095115151 – ident: e_1_3_4_66_2 doi: 10.2337/db20-0636 – ident: e_1_3_4_51_2 doi: 10.1152/ajpcell.1999.277.1.C121 – ident: e_1_3_4_61_2 doi: 10.1126/science.181.4096.223 – ident: e_1_3_4_56_2 doi: 10.1021/bi00070a033 – ident: e_1_3_4_62_2 doi: 10.1038/nsb0197-10 – ident: e_1_3_4_44_2 doi: 10.1006/jmbi.1996.0320 – ident: e_1_3_4_20_2 doi: 10.1371/journal.pone.0013333 – ident: e_1_3_4_26_2 doi: 10.1016/j.mam.2014.12.001 – ident: e_1_3_4_18_2 doi: 10.1172/JCI111338 – ident: e_1_3_4_52_2 doi: 10.2337/db19-1106 – ident: e_1_3_4_57_2 doi: 10.1021/bi9910070 – ident: e_1_3_4_80_2 doi: 10.1021/ja071442e – ident: e_1_3_4_1_2 doi: 10.1016/S0959-440X(98)80037-7 – ident: e_1_3_4_23_2 doi: 10.1074/jbc.R109.009936 – ident: e_1_3_4_29_2 doi: 10.1385/CBB:40:3:143 – ident: e_1_3_4_47_2 doi: 10.1074/jbc.C111.279927 – ident: e_1_3_4_60_2 doi: 10.1021/bi0202981 – ident: e_1_3_4_21_2 doi: 10.1074/jbc.M300906200 – ident: e_1_3_4_59_2 doi: 10.1016/j.sbi.2004.01.009 – ident: e_1_3_4_17_2 doi: 10.1016/S0021-9258(18)83355-5 – ident: e_1_3_4_77_2 doi: 10.1016/0014-5793(95)00062-E – ident: e_1_3_4_63_2 doi: 10.1507/endocrj.48.81 – ident: e_1_3_4_76_2 doi: 10.1074/jbc.M114.588277 – ident: e_1_3_4_81_2 doi: 10.1016/j.pnmrs.2005.10.001 – ident: e_1_3_4_9_2 doi: 10.1101/gad.1058003 – ident: e_1_3_4_37_2 doi: 10.1093/protein/5.6.527 – volume: 118 start-page: 2148 year: 2008 ident: e_1_3_4_32_2 article-title: Seven mutations in the human insulin gene linked to permanent neonatal/infancy-onset diabetes mellitus publication-title: J. Clin. Invest. contributor: fullname: Colombo C. – volume: 40 start-page: 200 year: 2000 ident: e_1_3_4_13_2 article-title: Molecular evolution of insulin in non-mammalian vertebrates publication-title: Am. Zool. contributor: fullname: Conlon J. M. – ident: e_1_3_4_69_2 doi: 10.1074/jbc.M109.046888 – ident: e_1_3_4_14_2 doi: 10.1016/S0021-9258(18)52312-7 – ident: e_1_3_4_22_2 doi: 10.2337/db15-1345 – ident: e_1_3_4_72_2 doi: 10.1074/jbc.M110.152645 – ident: e_1_3_4_5_2 doi: 10.1074/jbc.C109.084921 – ident: e_1_3_4_50_2 doi: 10.1007/s00125-017-4295-2 – ident: e_1_3_4_31_2 doi: 10.1073/pnas.0707291104 |
SSID | ssj0009580 |
Score | 2.5103133 |
Snippet | Proteins have evolved to be foldable, and yet determinants of foldability may be inapparent once the native state is reached. Insight has emerged from studies... Significance Protein sequences evolve under multiple constraints, including structure, stability, and bioactivity. Yet hidden constraints (inapparent in the... Protein sequences evolve under multiple constraints, including structure, stability, and bioactivity. Yet hidden constraints (inapparent in the native... |
SourceID | pubmedcentral proquest crossref pubmed jstor |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 29618 |
SubjectTerms | Amino Acid Substitution - physiology Animals Beta cells Biological Sciences Biosynthesis Cell death Cell Line Cell Line, Tumor Cystine Diabetes mellitus Diabetes Mellitus - metabolism Disulfide bonds Disulfides - metabolism Endoplasmic reticulum Evolution Folding Gene Regulatory Networks - physiology Genetic diversity Growth factors HEK293 Cells Humans Hydroxyl groups Insulin Insulin - metabolism Insulin-like growth factors Insulin-Secreting Cells - metabolism MCF-7 Cells Mutation Pandemics Proinsulin - metabolism Protein Binding - physiology Protein Folding Protein transport Proteins Rats Receptor, Insulin - metabolism Receptors Secretion Self-assembly Structure-Activity Relationship Vertebrates |
Title | Evolution of insulin at the edge of foldability and its medical implications |
URI | https://www.jstor.org/stable/26970814 https://www.ncbi.nlm.nih.gov/pubmed/33154160 https://www.proquest.com/docview/2464864827 https://pubmed.ncbi.nlm.nih.gov/PMC7703552 |
Volume | 117 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T-QwEB4BBaJBPI_wkgsKrgi78TMp0Qq0QoAoDokuGtuJWInNrtjcSfx7xnksD11F67GlZDyT-Wx__gJwZo1LkZByjCbjsVToYiwyH3NEFyoaZj7sQ97d6_GjvHlSTyug-rswDWnf2clF9TK9qCbPDbdyPnWDnic2eLgbGQpTpfhgFVYpQPsl-lJpN23vnXD6_Eouez0fIwbzChcNmysbhvuVG7AuBEGIpNGn_KhKLTHxf5DzO3PyUym63oLNDkOyy_ZZt2GlqHZgu8vSBTvvpKR_78Lt1b8utNisZB3vnGHNCPaxsJMWmsvZi2_Vut8YVp5N6gWbtuc3bPKJcL4Hj9dXf0bjuPt_QuykFHWsTamNMUKWKnPeY6kzpzxPyGrppS2lNhqbUqNyhDzSgg_J7J00pTAlOrEPa9WsKg6Aaa9MIUxRcqclok2HtG5DodEpmyXKRnDe-y-ftzIZeXO8bUQevJ5_eD2C_ca_y35cZ4YsMoLj3uF5l0g0TmqZ6qBVGsGv1vfLgf3kRWC-zMqyQ5DO_mqhiGoktLsIOvzxyCPY4GHlnSQxl8ewVr_-LU4IntT2tAnHdzFe48M |
link.rule.ids | 230,315,730,783,787,888,27938,27939,53806,53808 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB2VIkEvlAKFQAEfOJRDdjf-TI6oarXAbsWhRb1FYztRV3SzKzZFgl_POB_bD_XSXj32wXlj-9l-fgH4ZI1LkZhyjCbjsVToYiwyH3NEF1Y0zHw4h5we6_Gp_HamzjZA9W9hGtG-s7NBdTEfVLPzRlu5nLthrxMb_pgeGEpTpfjwETym8TrS_SZ97bWbti9POE3Aksve0ceI4bLCVaPnykbhheUWPBGCSETSOFRerUutNPEu0nlbO3ltMTrahp99N1oNyq_BZW0H7t8th8d79_M5POvoKfvShndgo6hewE43AazYfudS_fklTA7_dFnLFiXrJO0Ma0aMkoVDulBcLi58awT-l2Hl2axesXl7NcRm17Tsr-D06PDkYBx3v2aInZSijrUptTFGyFJlznssdeaU5wlFLX1NS7MGGptSoXJEatKCjyjsnTSlMCU6sQub1aIq3gDTXplCmKLkTktEm45oS4hCo1M2S5SNYL8HJl-2Dhx5c3NuRB7gzK_gjGC3AW5dj-vMUERGsNcjmXdjlNpJLVMdbFAjeN2Cum7YZ0UE5gbc6wrBlftmhEBs3Lk70N4-uOVHeDo-mU7yydfj7-9gi4cNfpLEXO7BZv37snhPLKi2H5qc_w8lUQXH |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LTtwwFL2iICE2bYHSpqXUCxZ0kcnEz2RZUUa0BcQCJNRN5EcsRmUyIyYgtV_f6zyGAbFim2svnHNtH9vHxwD7RtlMI1OOtcppzIW2sS5zF1OtbZjRdO7CPuTpmTy-5D-vxNXSU1-NaN-a8aC6mQyq8XWjrZxNbNLrxJLz00OFaSoETWbOJ69gDfvsMOsX6gu_3ay9fUJxEOaU964-iiWzSs8bTVc-DLcsN2CdMSQSaeNS-TA3tfLE54jnU_3k0oQ0egO_-6a0OpQ_g7vaDOy_Jy6PL2rrW3jd0VTyrS2yCStltQWb3UAwJwedW_XXbTg5uu-yl0w96aTtRNcEmSUJm3Xhs5_euNYQ_C_RlSPjek4m7RERGS9p2t_B5ejo4vA47p5oiC3nrI6l8lIpxbgXuXVOe5lb4WiKUYN_1ODooZXJ8KOwSG6ykg4x7CxXnimvLduB1WpalR-ASCdUyVTpqZVca5MNcWmomdRWmDwVJoKDHpxi1jpxFM0JumJFgLR4gDSCnQa8RTkqc4URHsFuj2bR9VWsxyXPZLBDjeB9C-yiYp8ZEahHkC8KBHfuxxEEsnHp7oD7-OKaX2D9_PuoOPlx9usTbNCwzk_TmPJdWK1v78rPSIZqs9ek_X9o0QhH |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evolution+of+insulin+at+the+edge+of+foldability+and+its+medical+implications&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Rege%2C+Nischay+K.&rft.au=Liu%2C+Ming&rft.au=Yang%2C+Yanwu&rft.au=Dhayalan%2C+Balamurugan&rft.date=2020-11-24&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=117&rft.issue=47&rft.spage=29618&rft.epage=29628&rft_id=info:doi/10.1073%2Fpnas.2010908117&rft.externalDBID=n%2Fa&rft.externalDocID=10_1073_pnas_2010908117 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |