Evolution of insulin at the edge of foldability and its medical implications

Proteins have evolved to be foldable, and yet determinants of foldability may be inapparent once the native state is reached. Insight has emerged from studies of diseases of protein misfolding, exemplified by monogenic diabetes mellitus due to mutations in proinsulin leading to endoplasmic reticulum...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 117; no. 47; pp. 29618 - 29628
Main Authors Rege, Nischay K., Liu, Ming, Yang, Yanwu, Dhayalan, Balamurugan, Wickramasinghe, Nalinda P., Chen, Yen-Shan, Rahimi, Leili, Guo, Huan, Haataja, Leena, Sun, Jinhong, Ismail-Beigi, Faramarz, Phillips, Nelson B., Arvan, Peter, Weiss, Michael A.
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 24.11.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Proteins have evolved to be foldable, and yet determinants of foldability may be inapparent once the native state is reached. Insight has emerged from studies of diseases of protein misfolding, exemplified by monogenic diabetes mellitus due to mutations in proinsulin leading to endoplasmic reticulum stress and β-cell death. Cellular foldability of human proinsulin requires an invariant Phe within a conserved crevice at the receptor-binding surface (position B24). Any substitution, even related aromatic residue TyrB24, impairs insulin biosynthesis and secretion. As a seeming paradox, a monomeric TyrB24 insulin analog exhibits a native-like structure in solution with only a modest decrement in stability. Packing of TyrB24 is similar to that of PheB24, adjoining core cystine B19–A20 to seal the core; the analog also exhibits native self-assembly. Although affinity for the insulin receptor is decreased ∼20-fold, biological activities in cells and rats were within the range of natural variation. Together, our findings suggest that the invariance of PheB24 among vertebrate insulins and insulin-like growth factors reflects an essential role in enabling efficient protein folding, trafficking, and secretion, a function that is inapparent in native structures. In particular, we envision that the para-hydroxyl group of TyrB24 hinders pairing of cystine B19–A20 in an obligatory on-pathway folding intermediate. The absence of genetic variation at B24 and other conserved sites near this disulfide bridge—excluded due to β-cell dysfunction—suggests that insulin has evolved to the edge of foldability. Nonrobustness of a protein’s fitness landscape underlies both a rare monogenic syndrome and “diabesity” as a pandemic disease of civilization.
AbstractList Proteins have evolved to be foldable, and yet determinants of foldability may be inapparent once the native state is reached. Insight has emerged from studies of diseases of protein misfolding, exemplified by monogenic diabetes mellitus due to mutations in proinsulin leading to endoplasmic reticulum stress and β-cell death. Cellular foldability of human proinsulin requires an invariant Phe within a conserved crevice at the receptor-binding surface (position B24). Any substitution, even related aromatic residue TyrB24, impairs insulin biosynthesis and secretion. As a seeming paradox, a monomeric TyrB24 insulin analog exhibits a native-like structure in solution with only a modest decrement in stability. Packing of TyrB24 is similar to that of PheB24, adjoining core cystine B19–A20 to seal the core; the analog also exhibits native self-assembly. Although affinity for the insulin receptor is decreased ∼20-fold, biological activities in cells and rats were within the range of natural variation. Together, our findings suggest that the invariance of PheB24 among vertebrate insulins and insulin-like growth factors reflects an essential role in enabling efficient protein folding, trafficking, and secretion, a function that is inapparent in native structures. In particular, we envision that the para-hydroxyl group of TyrB24 hinders pairing of cystine B19–A20 in an obligatory on-pathway folding intermediate. The absence of genetic variation at B24 and other conserved sites near this disulfide bridge—excluded due to β-cell dysfunction—suggests that insulin has evolved to the edge of foldability. Nonrobustness of a protein’s fitness landscape underlies both a rare monogenic syndrome and “diabesity” as a pandemic disease of civilization.
Significance Protein sequences evolve under multiple constraints, including structure, stability, and bioactivity. Yet hidden constraints (inapparent in the native structure) may underlie informational content of protein sequences. An invariant aromatic residue in vertebrate insulins—a phenylalanine at its receptor-binding surface—is required for cellular folding efficiency. Any amino acid substitution impairs cellular biosynthesis, even tyrosine, whose related aromatic side chain preserves native structure and allows function within the range of natural variation. Our results suggest that sequences required for insulin’s bioactivity (similar in all vertebrates) are frozen at the edge of nonfoldability. Whereas evolved regulatory networks are ordinarily robust, proinsulin’s precarious foldability both underlies a rare monogenic form of diabetes and provides an evolutionary backdrop to the present obesity-related diabetes pandemic. Proteins have evolved to be foldable, and yet determinants of foldability may be inapparent once the native state is reached. Insight has emerged from studies of diseases of protein misfolding, exemplified by monogenic diabetes mellitus due to mutations in proinsulin leading to endoplasmic reticulum stress and β-cell death. Cellular foldability of human proinsulin requires an invariant Phe within a conserved crevice at the receptor-binding surface (position B24). Any substitution, even related aromatic residue Tyr B24 , impairs insulin biosynthesis and secretion. As a seeming paradox, a monomeric Tyr B24 insulin analog exhibits a native-like structure in solution with only a modest decrement in stability. Packing of Tyr B24 is similar to that of Phe B24 , adjoining core cystine B19–A20 to seal the core; the analog also exhibits native self-assembly. Although affinity for the insulin receptor is decreased ∼20-fold, biological activities in cells and rats were within the range of natural variation. Together, our findings suggest that the invariance of Phe B24 among vertebrate insulins and insulin-like growth factors reflects an essential role in enabling efficient protein folding, trafficking, and secretion, a function that is inapparent in native structures. In particular, we envision that the para -hydroxyl group of Tyr B24 hinders pairing of cystine B19–A20 in an obligatory on-pathway folding intermediate. The absence of genetic variation at B24 and other conserved sites near this disulfide bridge—excluded due to β-cell dysfunction—suggests that insulin has evolved to the edge of foldability. Nonrobustness of a protein’s fitness landscape underlies both a rare monogenic syndrome and “diabesity” as a pandemic disease of civilization.
Protein sequences evolve under multiple constraints, including structure, stability, and bioactivity. Yet hidden constraints (inapparent in the native structure) may underlie informational content of protein sequences. An invariant aromatic residue in vertebrate insulins—a phenylalanine at its receptor-binding surface—is required for cellular folding efficiency. Any amino acid substitution impairs cellular biosynthesis, even tyrosine, whose related aromatic side chain preserves native structure and allows function within the range of natural variation. Our results suggest that sequences required for insulin’s bioactivity (similar in all vertebrates) are frozen at the edge of nonfoldability. Whereas evolved regulatory networks are ordinarily robust, proinsulin’s precarious foldability both underlies a rare monogenic form of diabetes and provides an evolutionary backdrop to the present obesity-related diabetes pandemic. Proteins have evolved to be foldable, and yet determinants of foldability may be inapparent once the native state is reached. Insight has emerged from studies of diseases of protein misfolding, exemplified by monogenic diabetes mellitus due to mutations in proinsulin leading to endoplasmic reticulum stress and β-cell death. Cellular foldability of human proinsulin requires an invariant Phe within a conserved crevice at the receptor-binding surface (position B24). Any substitution, even related aromatic residue Tyr B24 , impairs insulin biosynthesis and secretion. As a seeming paradox, a monomeric Tyr B24 insulin analog exhibits a native-like structure in solution with only a modest decrement in stability. Packing of Tyr B24 is similar to that of Phe B24 , adjoining core cystine B19–A20 to seal the core; the analog also exhibits native self-assembly. Although affinity for the insulin receptor is decreased ∼20-fold, biological activities in cells and rats were within the range of natural variation. Together, our findings suggest that the invariance of Phe B24 among vertebrate insulins and insulin-like growth factors reflects an essential role in enabling efficient protein folding, trafficking, and secretion, a function that is inapparent in native structures. In particular, we envision that the para -hydroxyl group of Tyr B24 hinders pairing of cystine B19–A20 in an obligatory on-pathway folding intermediate. The absence of genetic variation at B24 and other conserved sites near this disulfide bridge—excluded due to β-cell dysfunction—suggests that insulin has evolved to the edge of foldability. Nonrobustness of a protein’s fitness landscape underlies both a rare monogenic syndrome and “diabesity” as a pandemic disease of civilization.
Proteins have evolved to be foldable, and yet determinants of foldability may be inapparent once the native state is reached. Insight has emerged from studies of diseases of protein misfolding, exemplified by monogenic diabetes mellitus due to mutations in proinsulin leading to endoplasmic reticulum stress and β-cell death. Cellular foldability of human proinsulin requires an invariant Phe within a conserved crevice at the receptor-binding surface (position B24). Any substitution, even related aromatic residue Tyr , impairs insulin biosynthesis and secretion. As a seeming paradox, a monomeric Tyr insulin analog exhibits a native-like structure in solution with only a modest decrement in stability. Packing of Tyr is similar to that of Phe , adjoining core cystine B19-A20 to seal the core; the analog also exhibits native self-assembly. Although affinity for the insulin receptor is decreased ∼20-fold, biological activities in cells and rats were within the range of natural variation. Together, our findings suggest that the invariance of Phe among vertebrate insulins and insulin-like growth factors reflects an essential role in enabling efficient protein folding, trafficking, and secretion, a function that is inapparent in native structures. In particular, we envision that the -hydroxyl group of Tyr hinders pairing of cystine B19-A20 in an obligatory on-pathway folding intermediate. The absence of genetic variation at B24 and other conserved sites near this disulfide bridge-excluded due to β-cell dysfunction-suggests that insulin has evolved to the edge of foldability. Nonrobustness of a protein's fitness landscape underlies both a rare monogenic syndrome and "diabesity" as a pandemic disease of civilization.
Author Haataja, Leena
Sun, Jinhong
Liu, Ming
Arvan, Peter
Wickramasinghe, Nalinda P.
Chen, Yen-Shan
Rege, Nischay K.
Ismail-Beigi, Faramarz
Dhayalan, Balamurugan
Rahimi, Leili
Yang, Yanwu
Weiss, Michael A.
Phillips, Nelson B.
Guo, Huan
Author_xml – sequence: 1
  givenname: Nischay K.
  surname: Rege
  fullname: Rege, Nischay K.
– sequence: 2
  givenname: Ming
  surname: Liu
  fullname: Liu, Ming
– sequence: 3
  givenname: Yanwu
  surname: Yang
  fullname: Yang, Yanwu
– sequence: 4
  givenname: Balamurugan
  surname: Dhayalan
  fullname: Dhayalan, Balamurugan
– sequence: 5
  givenname: Nalinda P.
  surname: Wickramasinghe
  fullname: Wickramasinghe, Nalinda P.
– sequence: 6
  givenname: Yen-Shan
  surname: Chen
  fullname: Chen, Yen-Shan
– sequence: 7
  givenname: Leili
  surname: Rahimi
  fullname: Rahimi, Leili
– sequence: 8
  givenname: Huan
  surname: Guo
  fullname: Guo, Huan
– sequence: 9
  givenname: Leena
  surname: Haataja
  fullname: Haataja, Leena
– sequence: 10
  givenname: Jinhong
  surname: Sun
  fullname: Sun, Jinhong
– sequence: 11
  givenname: Faramarz
  surname: Ismail-Beigi
  fullname: Ismail-Beigi, Faramarz
– sequence: 12
  givenname: Nelson B.
  surname: Phillips
  fullname: Phillips, Nelson B.
– sequence: 13
  givenname: Peter
  surname: Arvan
  fullname: Arvan, Peter
– sequence: 14
  givenname: Michael A.
  surname: Weiss
  fullname: Weiss, Michael A.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33154160$$D View this record in MEDLINE/PubMed
BookMark eNpVkM1rGzEUxEVxaGy3555aBDlv8vSx0u6lUIKTFAy5tGeh1UqJzFpyVlpD_vvI2HFaEOjxZvTTMAs0CzFYhL4RuCYg2c0u6HRNgUALDSHyE5qXkVSCtzBDcwAqq4ZTfokWKW0AoK0b-IwuGSM1JwLmaL3ax2HKPgYcHfYhTYMPWGecny22_ZM9rF0cet35wedXrEOPfU54a3tv9ID9djeU4UBIX9CF00OyX0_3Ev29W_25fajWj_e_b3-tK8M5y5WQTkgpGXd1a_peO9GauqekqF1J1QEhWnZNWdYGhGgshSL3hkvHpNOGLdHPI3c3dSWHsSGPelC70W_1-Kqi9up_Jfhn9RT3SkpgdU0L4OoEGOPLZFNWmziNoWRWlAvelENlcd0cXWaMKY3WnX8goA71q0P96qP-8uLHv8HO_ve-i-H70bBJOY5nnYpWFgJnbzjzjVQ
CitedBy_id crossref_primary_10_1073_pnas_2103518118
crossref_primary_10_1007_s13300_023_01468_4
crossref_primary_10_1007_s00018_021_03871_1
crossref_primary_10_1021_jacs_1c09611
crossref_primary_10_2337_db21_0422
crossref_primary_10_1038_s41574_021_00510_4
crossref_primary_10_1016_S1957_2557_21_00178_4
crossref_primary_10_3390_cells12071008
crossref_primary_10_1002_advs_202205389
crossref_primary_10_1002_cbic_202300818
crossref_primary_10_1007_s11892_022_01447_2
crossref_primary_10_3390_biom13010152
crossref_primary_10_1016_j_molmet_2021_101229
crossref_primary_10_1039_D2SC05343H
crossref_primary_10_1172_JCI142242
crossref_primary_10_3389_fendo_2021_754693
crossref_primary_10_3389_fendo_2022_821091
crossref_primary_10_1007_s00125_021_05569_2
crossref_primary_10_3390_biom13020257
crossref_primary_10_3389_fendo_2022_821069
crossref_primary_10_1016_j_metabol_2021_154870
crossref_primary_10_32352_0367_3057_1_23_04
crossref_primary_10_1042_BST20210244
crossref_primary_10_1038_s41591_021_01418_2
Cites_doi 10.1016/j.gde.2014.08.009
10.2337/diabetes.52.2.409
10.1074/jbc.C400475200
10.1021/bi011839
10.1016/j.mam.2015.01.001
10.1074/jbc.M115.708347
10.1073/pnas.0702697104
10.1007/s11154-010-9151-3
10.1016/S0196-9781(01)00423-5
10.1038/nrd.2015.36
10.1073/pnas.1412897111
10.3389/fendo.2011.00048
10.1073/pnas.1314781111
10.1016/j.tem.2010.07.001
10.1074/jbc.M206107200
10.1016/j.febslet.2013.04.044
10.1101/gad.1995910
10.1210/me.2015-1012
10.1073/pnas.79.17.5147
10.1021/bi011021o
10.1074/jbc.M117.808667
10.1074/jbc.M114.572040
10.1089/ars.2007.1860
10.1074/jbc.M114.608562
10.1016/S0959-440X(94)90173-2
10.1353/pbm.2010.0001
10.2337/diab.39.9.1033
10.1016/j.jchb.2016.07.001
10.1139/o97-023
10.1021/bi048025o
10.2337/db06-0658
10.1074/jbc.M113.510065
10.1111/j.1432-1033.1975.tb02190.x
10.1098/rstb.1988.0058
10.1016/0263-7855(96)00009-4
10.1074/jbc.RA119.011389
10.1074/jbc.M109.038042
10.1006/jmbi.1996.0648
10.1016/S0021-9258(19)47269-4
10.1016/j.cmet.2006.07.007
10.1038/286822a0
10.1002/anie.200703521
10.1111/j.2040-1124.2011.00100.x
10.1021/bi001905s
10.2337/diabetes.50.2007.S150
10.1016/S0969-2126(99)80078-1
10.1023/A:1012095115151
10.2337/db20-0636
10.1152/ajpcell.1999.277.1.C121
10.1126/science.181.4096.223
10.1021/bi00070a033
10.1038/nsb0197-10
10.1006/jmbi.1996.0320
10.1371/journal.pone.0013333
10.1016/j.mam.2014.12.001
10.1172/JCI111338
10.2337/db19-1106
10.1021/bi9910070
10.1021/ja071442e
10.1016/S0959-440X(98)80037-7
10.1074/jbc.R109.009936
10.1385/CBB:40:3:143
10.1074/jbc.C111.279927
10.1021/bi0202981
10.1074/jbc.M300906200
10.1016/j.sbi.2004.01.009
10.1016/S0021-9258(18)83355-5
10.1016/0014-5793(95)00062-E
10.1507/endocrj.48.81
10.1074/jbc.M114.588277
10.1016/j.pnmrs.2005.10.001
10.1101/gad.1058003
10.1093/protein/5.6.527
10.1074/jbc.M109.046888
10.1016/S0021-9258(18)52312-7
10.2337/db15-1345
10.1074/jbc.M110.152645
10.1074/jbc.C109.084921
10.1007/s00125-017-4295-2
10.1073/pnas.0707291104
ContentType Journal Article
Copyright Copyright National Academy of Sciences Nov 24, 2020
2020
Copyright_xml – notice: Copyright National Academy of Sciences Nov 24, 2020
– notice: 2020
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
5PM
DOI 10.1073/pnas.2010908117
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
DatabaseTitleList
CrossRef

MEDLINE
Virology and AIDS Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 29628
ExternalDocumentID 10_1073_pnas_2010908117
33154160
26970814
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIDDK NIH HHS
  grantid: R01 DK069764
– fundername: NIDDK NIH HHS
  grantid: P30 DK020572
– fundername: NIDDK NIH HHS
  grantid: R01 DK040949
– fundername: NIGMS NIH HHS
  grantid: T32 GM007250
– fundername: NIDDK NIH HHS
  grantid: R01 DK048280
– fundername: NIDDK NIH HHS
  grantid: F30 DK112644
– fundername: HHS | National Institutes of Health (NIH)
  grantid: R01 DK069764
– fundername: HHS | National Institutes of Health (NIH)
  grantid: R01 DK040949
– fundername: HHS | National Institutes of Health (NIH)
  grantid: 1F30DK112644
– fundername: American Diabetes Association (ADA)
  grantid: 7-13-IN-31
– fundername: HHS | National Institutes of Health (NIH)
  grantid: R01 DK48280
– fundername: HHS | National Institutes of Health (NIH)
  grantid: 5T32GM007250-38
– fundername: American Diabetes Association (ADA)
  grantid: 1-08-RA-149
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
79B
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACIWK
ACNCT
ACPRK
ADZLD
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
ASUFR
BKOMP
CS3
D0L
DCCCD
DIK
DNJUQ
DOOOF
DU5
DWIUU
E3Z
EBS
F5P
FRP
GX1
HH5
HYE
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VQA
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZA5
ZCA
~02
~KM
ADACV
CGR
CUY
CVF
ECM
EIF
H13
IPSME
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
5PM
ID FETCH-LOGICAL-c443t-67f677734f59cddaf69c5d21c44b416b011a7b89c55c0668e205d2dc47f37fac3
IEDL.DBID RPM
ISSN 0027-8424
IngestDate Tue Sep 17 21:22:25 EDT 2024
Thu Oct 10 15:45:15 EDT 2024
Fri Aug 23 01:31:49 EDT 2024
Tue Oct 29 09:12:47 EDT 2024
Fri Feb 02 07:18:38 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 47
Keywords protein structure
unfolded protein response
protein folding
folding efficiency
evolutionary medicine
Language English
License Published under the PNAS license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c443t-67f677734f59cddaf69c5d21c44b416b011a7b89c55c0668e205d2dc47f37fac3
Notes Author contributions: N.K.R., M.L., F.I.-B., N.B.P., P.A., and M.A.W. designed research; N.K.R., M.L., Y.Y., B.D., N.P.W., Y.-S.C., L.R., H.G., L.H., J.S., and F.I.-B. performed research; N.K.R., M.L., Y.Y., B.D., N.P.W., Y.-S.C., and M.A.W. analyzed data; and N.K.R., N.B.P., P.A., and M.A.W. wrote the paper.
Edited by Barbara B. Kahn, Beth Israel Deaconess Medical Center, Boston, MA, and approved September 21, 2020 (received for review May 29, 2020)
1N.K.R., M.L., and Y.Y. contributed equally to this work.
ORCID 0000-0003-3701-4679
0000-0002-4007-8799
0000-0002-3858-9530
0000-0001-6002-1207
0000-0003-2665-4072
0000-0002-3908-8324
0000-0002-8700-2775
0000-0002-1154-5482
0000-0002-4832-2987
0000-0003-1325-1610
0000-0003-4746-6636
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7703552
PMID 33154160
PQID 2464864827
PQPubID 42026
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7703552
proquest_journals_2464864827
crossref_primary_10_1073_pnas_2010908117
pubmed_primary_33154160
jstor_primary_26970814
PublicationCentury 2000
PublicationDate 2020-11-24
PublicationDateYYYYMMDD 2020-11-24
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-11-24
  day: 24
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2020
Publisher National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
References e_1_3_4_3_2
e_1_3_4_1_2
e_1_3_4_61_2
e_1_3_4_82_2
e_1_3_4_9_2
e_1_3_4_63_2
e_1_3_4_84_2
e_1_3_4_7_2
e_1_3_4_40_2
e_1_3_4_5_2
e_1_3_4_80_2
e_1_3_4_23_2
e_1_3_4_44_2
e_1_3_4_69_2
e_1_3_4_21_2
e_1_3_4_42_2
e_1_3_4_27_2
e_1_3_4_48_2
e_1_3_4_65_2
e_1_3_4_25_2
e_1_3_4_46_2
e_1_3_4_67_2
e_1_3_4_29_2
Colombo C. (e_1_3_4_32_2) 2008; 118
e_1_3_4_72_2
e_1_3_4_74_2
e_1_3_4_30_2
e_1_3_4_51_2
e_1_3_4_70_2
e_1_3_4_11_2
e_1_3_4_34_2
e_1_3_4_57_2
e_1_3_4_55_2
e_1_3_4_59_2
e_1_3_4_53_2
e_1_3_4_15_2
e_1_3_4_38_2
e_1_3_4_76_2
e_1_3_4_36_2
e_1_3_4_78_2
e_1_3_4_19_2
e_1_3_4_17_2
Conlon J. M. (e_1_3_4_13_2) 2000; 40
e_1_3_4_2_2
e_1_3_4_60_2
e_1_3_4_83_2
e_1_3_4_62_2
e_1_3_4_8_2
e_1_3_4_41_2
e_1_3_4_6_2
e_1_3_4_81_2
e_1_3_4_22_2
e_1_3_4_45_2
e_1_3_4_68_2
e_1_3_4_20_2
e_1_3_4_43_2
e_1_3_4_26_2
e_1_3_4_49_2
e_1_3_4_64_2
e_1_3_4_24_2
e_1_3_4_47_2
e_1_3_4_66_2
e_1_3_4_28_2
Steiner D. F. (e_1_3_4_4_2) 1969; 25
e_1_3_4_71_2
e_1_3_4_73_2
e_1_3_4_52_2
e_1_3_4_50_2
e_1_3_4_79_2
e_1_3_4_12_2
e_1_3_4_33_2
e_1_3_4_58_2
e_1_3_4_54_2
e_1_3_4_10_2
e_1_3_4_31_2
e_1_3_4_75_2
e_1_3_4_16_2
e_1_3_4_37_2
e_1_3_4_77_2
e_1_3_4_14_2
e_1_3_4_35_2
e_1_3_4_56_2
e_1_3_4_18_2
e_1_3_4_39_2
References_xml – ident: e_1_3_4_73_2
  doi: 10.1016/j.gde.2014.08.009
– ident: e_1_3_4_27_2
  doi: 10.2337/diabetes.52.2.409
– ident: e_1_3_4_30_2
  doi: 10.1074/jbc.C400475200
– ident: e_1_3_4_45_2
  doi: 10.1021/bi011839
– ident: e_1_3_4_65_2
  doi: 10.1016/j.mam.2015.01.001
– volume: 25
  start-page: 207
  year: 1969
  ident: e_1_3_4_4_2
  article-title: Proinsulin and the biosynthesis of insulin
  publication-title: Recent Prog. Horm. Res.
  contributor:
    fullname: Steiner D. F.
– ident: e_1_3_4_16_2
  doi: 10.1074/jbc.M115.708347
– ident: e_1_3_4_33_2
  doi: 10.1073/pnas.0702697104
– ident: e_1_3_4_19_2
  doi: 10.1007/s11154-010-9151-3
– ident: e_1_3_4_12_2
  doi: 10.1016/S0196-9781(01)00423-5
– ident: e_1_3_4_2_2
  doi: 10.1038/nrd.2015.36
– ident: e_1_3_4_43_2
  doi: 10.1073/pnas.1412897111
– ident: e_1_3_4_42_2
  doi: 10.3389/fendo.2011.00048
– ident: e_1_3_4_71_2
  doi: 10.1073/pnas.1314781111
– ident: e_1_3_4_24_2
  doi: 10.1016/j.tem.2010.07.001
– ident: e_1_3_4_7_2
  doi: 10.1074/jbc.M206107200
– ident: e_1_3_4_25_2
  doi: 10.1016/j.febslet.2013.04.044
– ident: e_1_3_4_8_2
  doi: 10.1101/gad.1995910
– ident: e_1_3_4_54_2
  doi: 10.1210/me.2015-1012
– ident: e_1_3_4_38_2
  doi: 10.1073/pnas.79.17.5147
– ident: e_1_3_4_46_2
  doi: 10.1021/bi011021o
– ident: e_1_3_4_41_2
  doi: 10.1074/jbc.M117.808667
– ident: e_1_3_4_70_2
  doi: 10.1074/jbc.M114.572040
– ident: e_1_3_4_10_2
  doi: 10.1089/ars.2007.1860
– ident: e_1_3_4_15_2
  doi: 10.1074/jbc.M114.608562
– ident: e_1_3_4_78_2
  doi: 10.1016/S0959-440X(94)90173-2
– ident: e_1_3_4_11_2
  doi: 10.1353/pbm.2010.0001
– ident: e_1_3_4_36_2
  doi: 10.2337/diab.39.9.1033
– ident: e_1_3_4_75_2
  doi: 10.1016/j.jchb.2016.07.001
– ident: e_1_3_4_79_2
  doi: 10.1139/o97-023
– ident: e_1_3_4_48_2
  doi: 10.1021/bi048025o
– ident: e_1_3_4_28_2
  doi: 10.2337/db06-0658
– ident: e_1_3_4_58_2
– ident: e_1_3_4_53_2
  doi: 10.1074/jbc.M113.510065
– ident: e_1_3_4_40_2
  doi: 10.1111/j.1432-1033.1975.tb02190.x
– ident: e_1_3_4_3_2
  doi: 10.1098/rstb.1988.0058
– ident: e_1_3_4_82_2
  doi: 10.1016/0263-7855(96)00009-4
– ident: e_1_3_4_35_2
  doi: 10.1074/jbc.RA119.011389
– ident: e_1_3_4_67_2
  doi: 10.1074/jbc.M109.038042
– ident: e_1_3_4_34_2
  doi: 10.1006/jmbi.1996.0648
– ident: e_1_3_4_83_2
  doi: 10.1016/S0021-9258(19)47269-4
– ident: e_1_3_4_55_2
  doi: 10.1016/j.cmet.2006.07.007
– ident: e_1_3_4_39_2
  doi: 10.1038/286822a0
– ident: e_1_3_4_49_2
  doi: 10.1002/anie.200703521
– ident: e_1_3_4_64_2
  doi: 10.1111/j.2040-1124.2011.00100.x
– ident: e_1_3_4_6_2
  doi: 10.1021/bi001905s
– ident: e_1_3_4_74_2
  doi: 10.2337/diabetes.50.2007.S150
– ident: e_1_3_4_68_2
  doi: 10.1016/S0969-2126(99)80078-1
– ident: e_1_3_4_84_2
  doi: 10.1023/A:1012095115151
– ident: e_1_3_4_66_2
  doi: 10.2337/db20-0636
– ident: e_1_3_4_51_2
  doi: 10.1152/ajpcell.1999.277.1.C121
– ident: e_1_3_4_61_2
  doi: 10.1126/science.181.4096.223
– ident: e_1_3_4_56_2
  doi: 10.1021/bi00070a033
– ident: e_1_3_4_62_2
  doi: 10.1038/nsb0197-10
– ident: e_1_3_4_44_2
  doi: 10.1006/jmbi.1996.0320
– ident: e_1_3_4_20_2
  doi: 10.1371/journal.pone.0013333
– ident: e_1_3_4_26_2
  doi: 10.1016/j.mam.2014.12.001
– ident: e_1_3_4_18_2
  doi: 10.1172/JCI111338
– ident: e_1_3_4_52_2
  doi: 10.2337/db19-1106
– ident: e_1_3_4_57_2
  doi: 10.1021/bi9910070
– ident: e_1_3_4_80_2
  doi: 10.1021/ja071442e
– ident: e_1_3_4_1_2
  doi: 10.1016/S0959-440X(98)80037-7
– ident: e_1_3_4_23_2
  doi: 10.1074/jbc.R109.009936
– ident: e_1_3_4_29_2
  doi: 10.1385/CBB:40:3:143
– ident: e_1_3_4_47_2
  doi: 10.1074/jbc.C111.279927
– ident: e_1_3_4_60_2
  doi: 10.1021/bi0202981
– ident: e_1_3_4_21_2
  doi: 10.1074/jbc.M300906200
– ident: e_1_3_4_59_2
  doi: 10.1016/j.sbi.2004.01.009
– ident: e_1_3_4_17_2
  doi: 10.1016/S0021-9258(18)83355-5
– ident: e_1_3_4_77_2
  doi: 10.1016/0014-5793(95)00062-E
– ident: e_1_3_4_63_2
  doi: 10.1507/endocrj.48.81
– ident: e_1_3_4_76_2
  doi: 10.1074/jbc.M114.588277
– ident: e_1_3_4_81_2
  doi: 10.1016/j.pnmrs.2005.10.001
– ident: e_1_3_4_9_2
  doi: 10.1101/gad.1058003
– ident: e_1_3_4_37_2
  doi: 10.1093/protein/5.6.527
– volume: 118
  start-page: 2148
  year: 2008
  ident: e_1_3_4_32_2
  article-title: Seven mutations in the human insulin gene linked to permanent neonatal/infancy-onset diabetes mellitus
  publication-title: J. Clin. Invest.
  contributor:
    fullname: Colombo C.
– volume: 40
  start-page: 200
  year: 2000
  ident: e_1_3_4_13_2
  article-title: Molecular evolution of insulin in non-mammalian vertebrates
  publication-title: Am. Zool.
  contributor:
    fullname: Conlon J. M.
– ident: e_1_3_4_69_2
  doi: 10.1074/jbc.M109.046888
– ident: e_1_3_4_14_2
  doi: 10.1016/S0021-9258(18)52312-7
– ident: e_1_3_4_22_2
  doi: 10.2337/db15-1345
– ident: e_1_3_4_72_2
  doi: 10.1074/jbc.M110.152645
– ident: e_1_3_4_5_2
  doi: 10.1074/jbc.C109.084921
– ident: e_1_3_4_50_2
  doi: 10.1007/s00125-017-4295-2
– ident: e_1_3_4_31_2
  doi: 10.1073/pnas.0707291104
SSID ssj0009580
Score 2.5103133
Snippet Proteins have evolved to be foldable, and yet determinants of foldability may be inapparent once the native state is reached. Insight has emerged from studies...
Significance Protein sequences evolve under multiple constraints, including structure, stability, and bioactivity. Yet hidden constraints (inapparent in the...
Protein sequences evolve under multiple constraints, including structure, stability, and bioactivity. Yet hidden constraints (inapparent in the native...
SourceID pubmedcentral
proquest
crossref
pubmed
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 29618
SubjectTerms Amino Acid Substitution - physiology
Animals
Beta cells
Biological Sciences
Biosynthesis
Cell death
Cell Line
Cell Line, Tumor
Cystine
Diabetes mellitus
Diabetes Mellitus - metabolism
Disulfide bonds
Disulfides - metabolism
Endoplasmic reticulum
Evolution
Folding
Gene Regulatory Networks - physiology
Genetic diversity
Growth factors
HEK293 Cells
Humans
Hydroxyl groups
Insulin
Insulin - metabolism
Insulin-like growth factors
Insulin-Secreting Cells - metabolism
MCF-7 Cells
Mutation
Pandemics
Proinsulin - metabolism
Protein Binding - physiology
Protein Folding
Protein transport
Proteins
Rats
Receptor, Insulin - metabolism
Receptors
Secretion
Self-assembly
Structure-Activity Relationship
Vertebrates
Title Evolution of insulin at the edge of foldability and its medical implications
URI https://www.jstor.org/stable/26970814
https://www.ncbi.nlm.nih.gov/pubmed/33154160
https://www.proquest.com/docview/2464864827
https://pubmed.ncbi.nlm.nih.gov/PMC7703552
Volume 117
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T-QwEB4BBaJBPI_wkgsKrgi78TMp0Qq0QoAoDokuGtuJWInNrtjcSfx7xnksD11F67GlZDyT-Wx__gJwZo1LkZByjCbjsVToYiwyH3NEFyoaZj7sQ97d6_GjvHlSTyug-rswDWnf2clF9TK9qCbPDbdyPnWDnic2eLgbGQpTpfhgFVYpQPsl-lJpN23vnXD6_Eouez0fIwbzChcNmysbhvuVG7AuBEGIpNGn_KhKLTHxf5DzO3PyUym63oLNDkOyy_ZZt2GlqHZgu8vSBTvvpKR_78Lt1b8utNisZB3vnGHNCPaxsJMWmsvZi2_Vut8YVp5N6gWbtuc3bPKJcL4Hj9dXf0bjuPt_QuykFHWsTamNMUKWKnPeY6kzpzxPyGrppS2lNhqbUqNyhDzSgg_J7J00pTAlOrEPa9WsKg6Aaa9MIUxRcqclok2HtG5DodEpmyXKRnDe-y-ftzIZeXO8bUQevJ5_eD2C_ca_y35cZ4YsMoLj3uF5l0g0TmqZ6qBVGsGv1vfLgf3kRWC-zMqyQ5DO_mqhiGoktLsIOvzxyCPY4GHlnSQxl8ewVr_-LU4IntT2tAnHdzFe48M
link.rule.ids 230,315,730,783,787,888,27938,27939,53806,53808
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB2VIkEvlAKFQAEfOJRDdjf-TI6oarXAbsWhRb1FYztRV3SzKzZFgl_POB_bD_XSXj32wXlj-9l-fgH4ZI1LkZhyjCbjsVToYiwyH3NEF1Y0zHw4h5we6_Gp_HamzjZA9W9hGtG-s7NBdTEfVLPzRlu5nLthrxMb_pgeGEpTpfjwETym8TrS_SZ97bWbti9POE3Aksve0ceI4bLCVaPnykbhheUWPBGCSETSOFRerUutNPEu0nlbO3ltMTrahp99N1oNyq_BZW0H7t8th8d79_M5POvoKfvShndgo6hewE43AazYfudS_fklTA7_dFnLFiXrJO0Ma0aMkoVDulBcLi58awT-l2Hl2axesXl7NcRm17Tsr-D06PDkYBx3v2aInZSijrUptTFGyFJlznssdeaU5wlFLX1NS7MGGptSoXJEatKCjyjsnTSlMCU6sQub1aIq3gDTXplCmKLkTktEm45oS4hCo1M2S5SNYL8HJl-2Dhx5c3NuRB7gzK_gjGC3AW5dj-vMUERGsNcjmXdjlNpJLVMdbFAjeN2Cum7YZ0UE5gbc6wrBlftmhEBs3Lk70N4-uOVHeDo-mU7yydfj7-9gi4cNfpLEXO7BZv37snhPLKi2H5qc_w8lUQXH
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LTtwwFL2iICE2bYHSpqXUCxZ0kcnEz2RZUUa0BcQCJNRN5EcsRmUyIyYgtV_f6zyGAbFim2svnHNtH9vHxwD7RtlMI1OOtcppzIW2sS5zF1OtbZjRdO7CPuTpmTy-5D-vxNXSU1-NaN-a8aC6mQyq8XWjrZxNbNLrxJLz00OFaSoETWbOJ69gDfvsMOsX6gu_3ay9fUJxEOaU964-iiWzSs8bTVc-DLcsN2CdMSQSaeNS-TA3tfLE54jnU_3k0oQ0egO_-6a0OpQ_g7vaDOy_Jy6PL2rrW3jd0VTyrS2yCStltQWb3UAwJwedW_XXbTg5uu-yl0w96aTtRNcEmSUJm3Xhs5_euNYQ_C_RlSPjek4m7RERGS9p2t_B5ejo4vA47p5oiC3nrI6l8lIpxbgXuXVOe5lb4WiKUYN_1ODooZXJ8KOwSG6ykg4x7CxXnimvLduB1WpalR-ASCdUyVTpqZVca5MNcWmomdRWmDwVJoKDHpxi1jpxFM0JumJFgLR4gDSCnQa8RTkqc4URHsFuj2bR9VWsxyXPZLBDjeB9C-yiYp8ZEahHkC8KBHfuxxEEsnHp7oD7-OKaX2D9_PuoOPlx9usTbNCwzk_TmPJdWK1v78rPSIZqs9ek_X9o0QhH
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evolution+of+insulin+at+the+edge+of+foldability+and+its+medical+implications&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Rege%2C+Nischay+K.&rft.au=Liu%2C+Ming&rft.au=Yang%2C+Yanwu&rft.au=Dhayalan%2C+Balamurugan&rft.date=2020-11-24&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=117&rft.issue=47&rft.spage=29618&rft.epage=29628&rft_id=info:doi/10.1073%2Fpnas.2010908117&rft.externalDBID=n%2Fa&rft.externalDocID=10_1073_pnas_2010908117
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon