Integrated bioelectronic proton-gated logic elements utilizing nanoscale patterned Nafion
A central endeavour in bioelectronics is the development of logic elements to transduce and process ionic to electronic signals. Motivated by this challenge, we report fully monolithic, nanoscale logic elements featuring n- and p-type nanowires as electronic channels that are proton-gated by electro...
Saved in:
Published in | Materials horizons Vol. 8; no. 1; pp. 224 - 233 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
01.01.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | A central endeavour in bioelectronics is the development of logic elements to transduce and process ionic to electronic signals. Motivated by this challenge, we report fully monolithic, nanoscale logic elements featuring n- and p-type nanowires as electronic channels that are proton-gated by electron-beam patterned Nafion. We demonstrate inverter circuits with state-of-the-art ion-to-electron transduction performance giving DC gain exceeding 5 and frequency response up to 2 kHz. A key innovation facilitating the logic integration is a new electron-beam process for patterning Nafion with linewidths down to 125 nm. This process delivers feature sizes compatible with low voltage, fast switching elements. This expands the scope for Nafion as a versatile patternable high-proton-conductivity element for bioelectronics and other applications requiring nanoengineered protonic membranes and electrodes.
We report fully monolithic, nanoscale logic elements featuring n- and p-type nanowires as electronic channels that are proton-gated by electron-beam patterned Nafion giving DC gain exceeding 5 and frequency response up to 2 kHz. |
---|---|
Bibliography: | 10.1039/d0mh01070g Electronic supplementary information (ESI) available. See DOI ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2051-6347 2051-6355 |
DOI: | 10.1039/d0mh01070g |