Analysis of sulfur poisoning on a PEM fuel cell electrode

The extent of irreversible deactivation of Pt towards hydrogen oxidation reaction (HOR) due to sulfur adsorption and subsequent electrochemical oxidation is quantified in a functional polymer electrolyte membrane (PEM) fuel cell. At 70 °C, sequential hydrogen sulfide (H 2S) exposure and electrochemi...

Full description

Saved in:
Bibliographic Details
Published inElectrochimica acta Vol. 55; no. 20; pp. 5683 - 5694
Main Authors Sethuraman, Vijay A., Weidner, John W.
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.08.2010
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The extent of irreversible deactivation of Pt towards hydrogen oxidation reaction (HOR) due to sulfur adsorption and subsequent electrochemical oxidation is quantified in a functional polymer electrolyte membrane (PEM) fuel cell. At 70 °C, sequential hydrogen sulfide (H 2S) exposure and electrochemical oxidation experiments indicate that as much as 6% of total Pt sites are deactivated per monolayer sulfur adsorption at open-circuit potential of a PEM fuel cell followed by its removal. The extent of such deactivation is much higher when the electrode is exposed to H 2S while the fuel cell is operating at a finite load, and is dependent on the local overpotential as well as the duration of exposure. Regardless of this deactivation, the H 2/O 2 polarization curves obtained on post-recovery electrodes do not show performance losses suggesting that such performance curves alone cannot be used to assess the extent of recovery due to sulfur poisoning. A concise mechanism for the adsorption and electro-oxidation of H 2S on Pt anode is presented. H 2S dissociatively adsorbs onto Pt as two different sulfur species and at intermediate oxidation potentials, undergoes electro-oxidation to sulfur and then to sulfur dioxide. This mechanism is validated by charge balances between hydrogen desorption and sulfur electro-oxidation on Pt. The ignition potential for sulfur oxidation decreases with increase in temperature, which coupled with faster electro-oxidation kinetics result in the easier removal of adsorbed sulfur at higher temperatures. Furthermore, the adsorption potential is found to influence sulfur coverage of an electrode exposed to H 2S. As an implication, the local potential of a PEM fuel cell anode exposed to H 2S contaminated fuel should be kept below the equilibrium potential for sulfur oxidation to prevent irreversible loss of Pt sites.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0013-4686
1873-3859
DOI:10.1016/j.electacta.2010.05.004