Similarity between soybean and Arabidopsis seed methylomes and loss of non-CG methylation does not affect seed development

We profiled soybean and Arabidopsis methylomes from the globular stage through dormancy and germination to understand the role of methylation in seed formation. CHH methylation increases significantly during development throughout the entire seed, targets primarily transposable elements (TEs), is ma...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 114; no. 45; pp. E9730 - E9739
Main Authors Lin, Jer-Young, Le, Brandon H., Chen, Min, Henry, Kelli F., Hur, Jungim, Hsieh, Tzung-Fu, Chen, Pao-Yang, Pelletier, Julie M., Pellegrini, Matteo, Fischer, Robert L., Harada, John J., Goldberg, Robert B.
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 07.11.2017
SeriesPNAS Plus
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We profiled soybean and Arabidopsis methylomes from the globular stage through dormancy and germination to understand the role of methylation in seed formation. CHH methylation increases significantly during development throughout the entire seed, targets primarily transposable elements (TEs), is maintained during endoreduplication, and drops precipitously within the germinating seedling. By contrast, no significant global changes in CG- and CHG-context methylation occur during the same developmental period. An Arabidopsis ddcc mutant lacking CHH and CHG methylation does not affect seed development, germination, or major patterns of gene expression, implying that CHH and CHG methylation does not play a significant role in seed development or in regulating seed gene activity. By contrast, over 100 TEs are transcriptionally de-repressed in ddcc seeds, suggesting that the increase in CHH-context methylation may be a failsafe mechanism to reinforce transposon silencing. Many genes encoding important classes of seed proteins, such as storage proteins, oil biosynthesis enzymes, and transcription factors, reside in genomic regions devoid of methylation at any stage of seed development. Many other genes in these classes have similar methylation patterns, whether the genes are active or repressed. Our results suggest that methylation does not play a significant role in regulating large numbers of genes important for programming seed development in both soybean and Arabidopsis. We conclude that understanding the mechanisms controlling seed development will require determining how cis-regulatory elements and their cognate transcription factors are organized in genetic regulatory networks.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Reviewers: Z.J.C., University of Texas at Austin; B.A.L., University of Nebraska; and L.O.V., University of Illinois.
Contributed by Robert B. Goldberg, October 3, 2017 (sent for review September 25, 2017; reviewed by Z. Jeffrey Chen, Brian A. Larkins, and Lila O. Vodkin)
2Present address: Department of Botany and Plant Sciences, University of California, Riverside, CA 92521.
3Present address: Department of Plant and Microbial Biology & Plants for Human Health Institute, North Carolina State University, Kannapolis, NC 28081.
1J.-Y.L., B.H.L., and M.C. contributed equally to this work.
Author contributions: J.-Y.L., B.H.L., M.C., T.-F.H., P.-Y.C., M.P., R.L.F., J.J.H., and R.B.G. designed research; J.-Y.L., B.H.L., M.C., K.F.H., J.H., and J.M.P. performed research; J.-Y.L., B.H.L., M.C., and R.B.G. analyzed data; and J.-Y.L., B.H.L., M.C., and R.B.G. wrote the paper.
4Present address: Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan.
ISSN:0027-8424
1091-6490
1091-6490
DOI:10.1073/pnas.1716758114